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Staged tree models

@ Discrete statistical model encoding relationships between events.
@ Generalize discrete Bayesian Networks.
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Staged tree models
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@ K[P17p27p37p4] — K[01792a9377717772]/(01 + 02 + 03 - ]‘77]1 + 2 — 1)

p1 > 03 p2 — 0
p3 > 0112 pa — O

@ ( is surjective.
o Variety cut out by Ker(y) Toric?
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@ Binomial generators give Markov basis, contribute in hypothesis testing.

@ Polytope associated to toric variety helps to study existence of maximum
likelihood estimates.

© The rich algebra, geometry, and combinatorics of a toric ideal facilitates
computations on the maximum likelihood degree and estimate
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What is Toric?

T, = (K*)" is called the algebraic torus of dimension r.

Tn mKnr (t17“' 7tn) : (Ulv"' 7vn) = (tlvla"' 7tnvn)-

An irreducible variety V' C K" is called toric if it is orbit closure under some
algebraic torus action.

e I(V) generated by binomials = V s toric.
@ Keryp is not generated by binomials.

@ p1+ -+ pn,—1¢€Kerp. 4
@ V,, = Cone over the zero set of Keryp. \é, >

o ABUSE OF NOTATION ALERT!! Kerp = Ideal of V.
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@ Look at the symmetry Lie algebra of Kery.

9 = (9i) € Mn(K), g-2; =32 gijwi and g-p(a1, -+, n) = p(g- 21, g Tn)
Induces GL,,(K) ~ K", g — (g7, ie., g-v= (g7 H7T 0.

Symmetry group

Let I C K[zy,- - ,x,] be a homogeneous ideal and V' C K™ be its zero set. The
symmetry group of I, Gy :={g € GL,,(K)|g-p € I,Vp € I}, and symmetry group
of V, Gy :={g € GL,(K)|g-v € V,Yv € V}.

g € ]\/[n(K)r P, P1,P2 S K[x17 e 7xn]

o gxp=pif deg(p) =0

° gxp=g-pifdeg(p) =1

o g*(p1p2) = (9 * p1)p2 + p1(g * p2)
extended linearly to K[z1, -+ ,z,].

Symmetry Lie algebra

Let I C K[zy,- - ,x,] be a homogeneous ideal. The symmetry Lie algebra of I,
gl :={geal,(K)lgxpel,Vpel}
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gl; = 9[1d-

Proof: gl; C gl;,.

Let g€ gl;,, p€ = (p1,---,pr), where py,--- ,py generates I, and
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= p=fipr+ -+ favk, f1,00 5 fe €Klwy, oo 1]

gxp=g*(fip1) + -+ gx (fupr)
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e Gorgen, Maraj, and Nicklasson [1] showed all staged tree models with one
color and at most 3 children at each vertex and depth at most 3, are toric.

@ Conjectured: Same remains true for any depth.

P P2
e o pit -+ 7 pi P2 Pa
Ozypa\ m\04 2 Ds P2+ +Dpe & Ds
N S D9 p7 Pa+ps+DPe Do
P9 P

o I = Keryp, is generated in degree 2 by 18 equations.
e gl =gly,.
e dim(V,,) = 3, but dim(gl;) = 2.

o — Conjecture is FALSE!
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q1 = ToTy — T1T5, Qo = x5 — 1123 + 1176 — x5 € Clwy, ..., 26],
1= (q17Q2)7 d=2.

Degree 2 part of Clxy, -+ , 6] is = S2CC = C?L.

q1,qo represented by 1 x 21 vectors.

9 = (gij)6x6, g *q; given by 1 x 21 vector with entries linear in g;;.

Want: g p; € (q1,2)

Build two 3 x 21 matrices, collect equations from determinant of 3 x 3 minors.

Construct gl; = gl;, as vector space satisfying equations.
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How to calculate?

q1 = ToTy — T1T5, Qo = x5 — 1123 + 1176 — x5 € Clwy, ..., 26],
1= (q17Q2)7 d=2.

Degree 2 part of Clxy, -+ , 6] is = S2CC = C?L.

q1,qo represented by 1 x 21 vectors.

9 = (gij)6x6, g *q; given by 1 x 21 vector with entries linear in g;;.

Want: g p; € (q1,2)

Build two 3 x 21 matrices, collect equations from determinant of 3 x 3 minors.
Construct gl; = gl;, as vector space satisfying equations.

Found: dim(V;) = 4,
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How to calculate?

q1 = ToTy — T1T5, Qo = x5 — 1123 + 1176 — x5 € Clwy, ..., 26],
1= (q17Q2)7 d=2.

Degree 2 part of Clxy, -+ , 6] is = S2CC = C?L.

q1,qo represented by 1 x 21 vectors.

9 = (gij)6x6, g *q; given by 1 x 21 vector with entries linear in g;;.

Want: g p; € (q1,2)

Build two 3 x 21 matrices, collect equations from determinant of 3 x 3 minors.
Construct gl; = gl;, as vector space satisfying equations.

Found: dim(V7) =4, dim(gl;) = 5.
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Vi Toric?




Vi Toric?

@ Does gl; contain a large enough torus?




Vi Toric?

@ Does gl; contain a large enough torus?

@ gl; is solvable.




Vi Toric?

@ Does gl; contain a large enough torus?
@ gl; is solvable.

@ —> gl; is upper-triangularizable.

A&M University



Vi Toric?

Does gl; contain a large enough torus?
gl; is solvable.

= gl; is upper-triangularizable.

Find a basis such that gl; is upper-triangular.
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Vi Toric?

Does gl; contain a large enough torus?

gl; is solvable.

= gl; is upper-triangularizable.

Find a basis such that gl; is upper-triangular.

T Tg To — — 11Xy + 123 T3 — Ts,
1 6 )

Ty > To + I3, Ts — T1 + T4, Te ’—)221’1 72il’4+l’5
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Vi Toric?

@ Does gl; contain a large enough torus?

@ gl; is solvable.

@ —> gl; is upper-triangularizable.

o Find a basis such that gl; is upper-triangular.

T Tg To — — 11Xy + 123 T3 — Ts,
1 6 )

Ty > To + I3, Ts — T1 + T4, Te ’—)221’1 72il’4+l’5

Q= —ix% + m% — T1Tg — T4Xg, (o = —ix% — m% — X1%e + T4T6




Vi Toric?

@ Does gl; contain a large enough torus?

@ gl; is solvable.

@ —> gl; is upper-triangularizable.

o Find a basis such that gl; is upper-triangular.

1 — Tg, To — — 1To + 1T3, T3 — Ts,
Ty > To + I3, Ts — T1 + T4, Tg 221’1 — 221’4 + x5
S 2 2 = 22 2
Q1 = —1T5 + 125 — T1Te — T4X6, Qo = —1T5 —1T3 — T1X6 + Talg
I1+4: - 2 —q _ - 2
— DL — x5 4 126, LoD — pyxe — Qa3




Thank you!
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