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Staged tree models

Discrete statistical model encoding relationships between events.

Generalize discrete Bayesian Networks.
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φ : K[p1, p2, p3, p4] → K[θ1, θ2, θ3, η1, η2]/(θ1 + θ2 + θ3 − 1, η1 + η2 − 1)

p1 7→ θ3 p2 7→ θ2

p3 7→ θ1η2 p4 7→ θ1η1

φ is surjective.

Variety cut out by Ker(φ) Toric?
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Why Toric?

1 Binomial generators give Markov basis, contribute in hypothesis testing.
1. Persi Diaconis and Bernd Sturmfels. Algebraic algorithms for sampling from
conditional distributions.” The Annals of statistics (1998).
2. Sonja Petrović. What is... a Markov basis?. Notices of the American
Mathematical Soc., 66(7), 2019.
3. Seth Sullivant. “Algebraic statistics”. American Mathematical Soc., (2018).

2 Polytope associated to toric variety helps to study existence of maximum
likelihood estimates.
1. Stephen Fienberg and Alessandro Rinaldo. “Maximum likelihood estimation in
log-linear models”. The Annals of Statistics, (2012).

3 The rich algebra, geometry, and combinatorics of a toric ideal facilitates
computations on the maximum likelihood degree and estimate
1. Steven Evans and Terrence Speed. “Invariants of some probability models used
in phylogenetic inference.” The Annals of Statistics (1993).
2. Carlos Amendola, Dimitra Kosta, Kaie Kubjas. “Maximum Likelihood
Estimation of Toric Fano Varieties” (2020): no.11.1, 15-30.
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What is Toric?

Tr = (K∗)r is called the algebraic torus of dimension r.

Tn ↷ Kn, (t1, · · · , tn) · (v1, · · · , vn) = (t1v1, · · · , tnvn).

Toric
An irreducible variety V ⊂ Kn is called toric if it is orbit closure under some
algebraic torus action.

I(V ) generated by binomials =⇒ V is toric.

Kerφ is not generated by binomials.

p1 + · · ·+ pn − 1 ∈ Kerφ.

Vφ = Cone over the zero set of Kerφ.

ABUSE OF NOTATION ALERT!!! Kerφ = Ideal of Vφ.
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Strategy

Look at the symmetry Lie algebra of Kerφ.

g = (gij) ∈ Mn(K), g · xj =
∑

i gijxi and g · p(x1, · · · , xn) = p(g · x1, · · · , g · xn)
Induces GLn(K) ↷ Kn, g 7→ (g−1)T , i.e., g · v = (g−1)T · v.

Symmetry group

Let I ⊂ K[x1, · · · , xn] be a homogeneous ideal and V ⊂ Kn be its zero set. The
symmetry group of I, GI := {g ∈ GLn(K)|g · p ∈ I, ∀p ∈ I}, and symmetry group
of V , GV := {g ∈ GLn(K)|g · v ∈ V,∀v ∈ V }.

g ∈ Mn(K), p, p1, p2 ∈ K[x1, · · · , xn]

g ∗ p = p if deg(p) = 0

g ∗ p = g · p if deg(p) = 1

g ∗ (p1p2) = (g ∗ p1)p2 + p1(g ∗ p2)
extended linearly to K[x1, · · · , xn].

Symmetry Lie algebra

Let I ⊂ K[x1, · · · , xn] be a homogeneous ideal. The symmetry Lie algebra of I,
glI := {g ∈ gln(K)|g ∗ p ∈ I, ∀p ∈ I}.
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glI := {g ∈ gln(K)|g ∗ p ∈ I, ∀p ∈ I}.
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Strategy

V an irreducible variety given by a homogeneous prime ideal I ⊂ K[x1, · · · , xn].

GI = GV .

glI = glV is Lie algebra associated to GI .

V is toric =⇒ GI contains a torus Tr.

V is toric =⇒ dim(GI) ≥ dim(V ).

GI is not linear, glI is.

V is toric =⇒ dim(glI) ≥ dim(V ).
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How to calculate?

Proposition

Let I ⊂ K[x1, · · · , xn] be a homogeneous ideal generated in degree d. Then
glI = glId .

Proof: glI ⊂ glId .
Let g ∈ glId , p ∈ I = (p1, · · · , pk), where p1, · · · , pk generates I, and
deg(pi) = d.
=⇒ p = f1p1 + · · ·+ fkpk, f1, · · · , fk ∈ K[x1, · · · , xn]

g ∗ p = g ∗ (f1p1) + · · ·+ g ∗ (fkpk)
= (g ∗ f1)p1 + f1(g ∗ p1) + · · ·+ (g ∗ fk)pk + fk(g ∗ pk)

g ∗ (fi)pi ∈ I, fig ∗ (pi) ∈ I, =⇒ g ∗ p ∈ I, =⇒ g ∈ glI .
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Conjecture

Görgen, Maraj, and Nicklasson [1] showed all staged tree models with one
color and at most 3 children at each vertex and depth at most 3, are toric.

Conjectured: Same remains true for any depth.

p1 + · · ·+ p7 p1 p2 p4
p8 p2 + · · ·+ p6 p3 p5
p9 p7 p4 + p5 + p6 p6



I = Kerφ, is generated in degree 2 by 18 equations.

glI = glI2 .

dim(Vφ) = 3, but dim(glI) = 2.

=⇒ Conjecture is FALSE!
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How to calculate?

q1 = x2x4 − x1x5, q2 = x2
2 − x1x3 + x1x6 − x2

4 ∈ C[x1, . . . , x6],

I = (q1, q2), d = 2.

Degree 2 part of C[x1, · · · , x6] is ∼= S2C6 ∼= C21.

q1, q2 represented by 1× 21 vectors.

g = (gij)6×6, g ∗ qi given by 1× 21 vector with entries linear in gij .

Want: g ∗ pi ∈ ⟨q1, q2⟩

Build two 3× 21 matrices, collect equations from determinant of 3× 3 minors.

Construct glI = glI2 as vector space satisfying equations.

Found: dim(VI) = 4, dim(glI) = 5.
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Degree 2 part of C[x1, · · · , x6] is ∼= S2C6 ∼= C21.

q1, q2 represented by 1× 21 vectors.

g = (gij)6×6, g ∗ qi given by 1× 21 vector with entries linear in gij .

Want: g ∗ pi ∈ ⟨q1, q2⟩

Build two 3× 21 matrices, collect equations from determinant of 3× 3 minors.

Construct glI = glI2 as vector space satisfying equations.

Found: dim(VI) = 4, dim(glI) = 5.
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VI Toric?

Does glI contain a large enough torus?

glI is solvable.

=⇒ glI is upper-triangularizable.

Find a basis such that glI is upper-triangular.

x1 7→ x6, x2 7→ − ix2 + ix3, x3 7→ x5,

x4 7→ x2 + x3, x5 7→ x1 + x4, x6 7→ 2ix1 − 2ix4 + x5

q̃1 = −ix2
2 + ix2

3 − x1x6 − x4x6, q̃2 = −ix2
2 − ix2

3 − x1x6 + x4x6

− q̃1+q̃2
2 = ix2

2 + x1x6,
q̃2−q̃1

2 = x4x6 − ix2
3
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Thank you

Thank you!
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