Tensors of Minimal Border Rank

Arpan Pal

Texas A&M University, College Station, TX

October 16, 2020

Simultaneously Diagonalizable Matrices

Let M_1, \cdots, M_m be m simultaneously diagonalizable $m \times m$ matrices.

Classical Problem

Classify the closure of the space of a finite number of simultaneously diagonalizable matrices.

Known Results

- End Closed Condition: Known since 1960.[Gerstenhaber]
- Flag Condition: Appeared in 1997. [Burgisser, Clausen, Shokrollahi]

Definitions

Let $T \in A \otimes B \otimes C$. T can be seen as a linear map $T_A : A^* \to B \otimes C$. Similarly T_B and T_C .

Definition

The rank of a tensor T, denoted $\mathbf{R}(T)$, is the smallest r such that $T = \sum_{i=1}^{r} a_i \otimes b_i \otimes c_i$.

Definition

The *border rank* of a tensor T, denoted $\underline{\mathbf{R}}(T)$, is the smallest r such that $T = \lim_{\epsilon \to 0} T_{\epsilon}$ where $\mathbf{R}(T_{\epsilon}) = r$.

Definition

The tensor T is called *concise* if T_A , T_B and T_C are of full rank.

Questions

Assume $\dim(A) = \dim(B) = \dim(C) = m$ and $T \in A \otimes B \otimes C$.

Question 1

Find equations for the set of border rank at most m tensors.

Question 1 is answered up to dimension m=4.[Friedland]

Assuming T is concise, minimal possible border rank for T is m.

Question 2

Find equations for the set of concise minimal border rank tensors.

Under a natural genericity condition this question is same as characterizing the closure of simultaneously diagonalizable matrices.

 $B\otimes C$ is identified with linear maps from B^* to C , $\operatorname{Hom}(B^*,C).$

Definition

T is called 1_A -generic(similarly 1_B and 1_C) if there exist $x \in A^*$ such that $T_A(x)$ is invertible. T is called 1_* -generic if it is 1_A , 1_B or 1_C -generic.

If T is $1_{\ast}\mbox{-generic then}$ we reduce to the previous classical problem of classifying the closure of simultaneously diagonalizable matrices.

Question 3

Find equations for the set of concise, 1_* -generic, minimal border rank tensors.

Question 3 is answered for m = 5.[Landsberg, Michalek]

Let T be concise, 1_A -generic, and $\alpha_1, \dots, \alpha_m$ be a basis of A^* with $T_A(\alpha_1)$ full rank. Consider $Id_{B^*}, T_A(\alpha_1)^{-1}T_A(\alpha_2), \dots, T_A(\alpha_1)^{-1}T_A(\alpha_m) \in \operatorname{Hom}(B^*, B^*)$.

If T is of rank m then note that $T_A(\alpha_1)^{-1}T_A(\alpha_2), \cdots, T_A(\alpha_1)^{-1}T_A(\alpha_m)$ needs to be simultaneously diagonalizable matrices. This is basically consequence of Strassen's equations.

Thus if T is of border rank m then $T_A(\alpha_1)^{-1}T_A(\alpha_2), \dots, T_A(\alpha_1)^{-1}T_A(\alpha_m)$ has to be in the closure of the space of simultaneously diagonalizable tuple of matrices.

- Question 1 is finding equations for the secant variety, $\sigma_m(\mathbb{CP}^{m-1}\times\mathbb{CP}^{m-1}\times\mathbb{CP}^{m-1}).$
- Complexity Theory: Latest bound on the exponent of matrix multiplication is achieved through Coppersmith-Winograd tensor. Which is a concise minimal border rank tensor.
- Classical Linear Algebra: Closure of simultaneously diagonalizable matrices.
- Algebraic Geometry: Hilbert schemes and Quot Schemes.

Strassen's Equations

Simultaneously diagonalizable \implies Commuting.

Theorem ([Strassen])

Let X_1, X_2 and Y be in $T_A(A^*)$. If T is of minimal border rank then $X_1 \operatorname{adj}(Y) X_2 - X_2 \operatorname{adj}(Y) X_1 = 0$.

Assuming T 1_{*}-generic, we can take Y to be of full rank and in particular identity matrix. Then Strassen's Equations precisely reduces to commuting criterion of X_1 and X_2 .

These are necessary conditions a tensor must satisfy in order to be of minimal border rank.

A new paper, *Apolarity, Border Rank and Multigraded Hilbert Schemes* by Weronika Buczynska and Jaroslaw Buczynski[Buczynska, Buczynski], gives a new series of necessary conditions for minimal border rank.

 $T \in A \otimes B \otimes C$ concise tensor.

 $T_C(C^*) \subset A \otimes B.$

Passes 210-test if $\dim((T_C(C^*) \otimes A) \cap (S^2(A) \otimes B)) \ge m$.

Equivalent to previously known p = 1 Koszoul flattening equations.

We determined module structure of these equations for small m.

The tensor T is said to pass 111-test if $\dim((T_A(A^*) \otimes A) \cap (T_B(B^*) \otimes B) \cap (T_C(C^*) \otimes C)) \ge m.$

So if $\dim((T_A(A^*) \otimes A) \cap (T_B(B^*) \otimes B)) < m$ the tensor fails 111-test. These are called two factor 111-tests.

Consider the tensor(thanks to Joachim Jelisiejew) $T_J =$

 $a_1 \otimes (b_1 \otimes c_3 + b_5 \otimes c_5) + a_2 \otimes (b_1 \otimes c_4 + b_5 \otimes c_5) + a_3 \otimes (b_2 \otimes c_3 + b_5 \otimes c_5)$

 $+a_4 \otimes (b_2 \otimes c_4 + b_5 \otimes c_5) + a_5 \otimes (b_1 \otimes c_1 + b_2 \otimes c_2 + b_3 \otimes c_3 + b_4 \otimes c_4 + b_5 \otimes c_5).$

- T_J satisfies Strassen's equations.
- Known to be not minimal border rank using techniques from Deformation Theory, not polynomial.
- Fails 111-test, polynomial criterion.
- T_J in fact fails two factor 111-test.

Let $\mathfrak{g}_T := \{x \in \mathfrak{gl}(A) \oplus \mathfrak{gl}(B) \oplus \mathfrak{gl}(C) | x.T = 0\}$ be the symmetry lie algebra of Tand $\mathfrak{g}_{AB} := \{x \in \mathfrak{gl}(A) \oplus \mathfrak{gl}(B) | x.T = 0\}$. Similarly \mathfrak{g}_{BC} and \mathfrak{g}_{AC} .

Proposition

If T is of minimal border rank then $\dim(\mathfrak{g}_T) \geq 2m$.

Proposition

The tensor T passes all two factor 111-tests if and only if $\dim(\mathfrak{g}_T) \ge 2m$ and $\dim(\mathfrak{g}_{AB}), \dim(\mathfrak{g}_{BC}), \dim(\mathfrak{g}_{AC}) \ge m$.

- Understanding geometric significance of 111-test and possibly higher tests.
- Finding the $GL(A) \times GL(B) \times GL(C)$ -module structure of the equations originating from these tests.

This is joint work(in progress) with Prof. JM Landsberg.

In this case T is 1_A -generic and concise.

- Already solved, Question 3 for m=5.[Landsberg, Michalek]
- Known answer: Strassen's equations together with end closed condition.

Theorem (J. Jelisiejew, K. Sivic)

The closure of the space of 4-tuple of 5×5 commuting matrices is not irreducible and has exactly two components.

The principal component is the closure of simultaneously diagonalizable matrices and one other bad component. Further $T_{J_A}(A^*)$ belongs to the bad component.

- Any general point of the *bad* component fails 111-test and so non minimal border rank. Its boundary falls in the principal component.
- Extending same technique for m = 6 and answering Question 3 for m = 6. There are 3 *bad* components for m = 6.

This is joint work(in progress) with Prof. JM Landsberg and Prof. Joachim Jelisiejew.

Theorem ([Friedland], Thm 3.1)

Let $T \in A \otimes B \otimes C$ be 1_C -degenerate and rank of elements of $T_C(C^*)$ are bounded by m-1 but not by m-2. Then there exist bases of A, B, C such that, letting X_1, \dots, X_m be a basis of $T_C(C^*)$ as a space of matrices,

 $\mathbf{1} \quad X_1 = \begin{pmatrix} \mathsf{Id}_{m-1} & 0 \\ 0 & 0 \end{pmatrix}$ $\mathbf{2} \ X_m = \begin{pmatrix} \mathbf{x}_m & e_1 \\ e^{m-1} & 0 \end{pmatrix}$ • For all $2 \le s \le m-1$, $X_s = \begin{pmatrix} \mathbf{x}_s & 0 \\ 0 & 0 \end{pmatrix}$. Here $e_1 = (1, 0, \dots, 0)^t \in \mathbb{C}^{m-1}$, $e^{m-1} = (0, 0, \dots, 1) \in \mathbb{C}^{m-1*}$. $\mathbf{x}_i \in Mat_{(m-1)\times(m-1)}$ Moreover, let $U_R = \langle \mathbf{x}_m^j e_1 | j \in \mathbb{Z}_{\geq 0} \rangle \subset \mathbb{C}^{m-1}$ and $U_L = \langle e^{m-1} \mathbf{x}_m^j | j \in \mathbb{Z}_{\geq 0} \rangle \subset \mathbb{C}^{m-1*}$. Then $e^{m-1} U_R = 0, U_L e_1 = 0$ and $\mathbf{x}_s U_R = 0 = U_L \mathbf{x}_s$ for $2 \leq s \leq m-1$.

m=5, 1-degenerate

Case:
$$x_2^3 \neq 0$$
 and $x_3^4 = 0$

For s = 2, 3, 4.

It turns out in this case the tensor is always 1_A -generic.

Cases to consider

Case: $x_2^3 = x_3^4 = 0$

For s = 2, 3, 4.

This case is not automatic. Needs further analysis.

Cases to consider

Case: $x_1^2 = x_3^4 = 0$

For s = 2, 3, 4.

This case is not automatic. Needs further analysis.

- Do the remaining calculations for those cases.
- Extending these techniques using this normal form for dimension 6 and answer the same question for m=6.

This is joint work(in progress) with Prof. JM Landsberg.

Thank you!

References

Murray Gerstenhaber

On Dominance and Varieties of Commuting Matrices Annals of Mathematics, Mar. 1961, Second Series, Vol. 73 No. 2, pp 324-348.

JM Landsberg, Mateusz Michalek

Abelian Tensors

Journal of Pure and Applied Mathematics, Vol. 108, Issue 3, September 2017, pp 333-371.

V. Strassen

Rank and Optimal Computation of Generic Tensors Linear Algebra and its Applications, 52/53(1983), 645-685.

Weronika Buczynska, Jaroslaw Buczynski Apolarity, border rank and multigraded Hilbert scheme

Shmuel Friedland,

On tensors of border rank l in $\mathbb{C}^{m \times n \times l}$ Linear Algebra and its Applications, Volume 438, issue 2, pp 713-737

Peter Burgisser, Michael Clausen, and M. Amin Shokrollahi Algebraic complexity theory