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Simultaneously Diagonalizable Matrices

Let My,---, M,, be m simultaneously diagonalizable m x m matrices.

Classical Problem
Classify the closure of the space of a finite number of simultaneously
diagonalizable matrices.

@ End Closed Condition: Known since 1960.[Gerstenhaber]
e Flag Condition: Appeared in 1997.[ Burgisser, Clausen, Shokrollahi]
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let Te A B C.
T can be seen as a linear map T4 : A* — B® C. Similarly Tg and T¢.

The rank of a tensor T, denoted R(T'), is the smallest 7 such that
T = Z::l a; ®b; R ¢

The border rank of a tensor T, denoted R(T), is the smallest r such that
T= 1111(1)T6 where R(T,) = r.
€E—r

The tensor T is called concise if T4, T and T are of full rank.
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Assume dim(A4) = dim(B) = dim(C) =mand T € A B® C.

Question 1

Find equations for the set of border rank at most m tensors.

Question 1 is answered up to dimension m=4.[Friedland]

Assuming T is concise, minimal possible border rank for T" is m.

Question 2

Find equations for the set of concise minimal border rank tensors.

Under a natural genericity condition this question is same as characterizing the
closure of simultaneously diagonalizable matrices.




B ® C is identified with linear maps from B* to C, Hom(B*, C).

T is called 1 4-generic(similarly 15 and 1¢) if there exist © € A* such that Ty ()
is invertible. T is called 1,-generic if it is 14, 1 or 1o-generic.

If T is 1,-generic then we reduce to the previous classical problem of classifying
the closure of simultaneously diagonalizable matrices.

Question 3

Find equations for the set of concise, 1.-generic, minimal border rank tensors.

Question 3 is answered for m = 5.[Landsberg, Michalek]

Texas A&M University



Explanation

Let T be concise, 14-generic, and a, - -+ , @, be a basis of A* with T4 (a) full
rank. Consider Idp+,Ta(c1)  Ta(az), -+ ,Ta(cr) 1Ta(cm) € Hom(B*, B*).

If T is of rank m then note that T4 () 1T a(z), -+, Ta(c1) "1 Ta(vy) needs
to be simultaneously diagonalizable matrices. This is basically consequence of
Strassen’s equations.

Thus if T is of border rank m then Ta(a;) 1 Ta(az), -, Ta(ar) *Ta(vy,) has
to be in the closure of the space of simultaneously diagonalizable tuple of matrices.
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Question 1 is finding equations for the secant variety,
(Tm((CPm_l % C]Pm_l % C]Pm_l).

Complexity Theory: Latest bound on the exponent of matrix multiplication is
achieved through Coppersmith-Winograd tensor. Which is a concise minimal
border rank tensor.

Classical Linear Algebra: Closure of simultaneously diagonalizable matrices.

Algebraic Geometry: Hilbert schemes and Quot Schemes.
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Strassen’s Equations

Simultaneously diagonalizable = Commuting.

Theorem ([Strassen))

Let X1,X5 and Y be in To(A*). If T is of minimal border rank then
Xladj(Y)Xg - Xgad_/(Y)Xl =0.

Assuming T 1,-generic, we can take Y to be of full rank and in particular identity

matrix. Then Strassen’s Equations precisely reduces to commuting criterion of X3
and XQ.

These are necessary conditions a tensor must satisfy in order to be of minimal
border rank.
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Border Apolarity

A new paper, Apolarity, Border Rank and Multigraded Hilbert Schemes by
Weronika Buczynska and Jaroslaw Buczynski[Buczynska, Buczynski], gives a new
series of necessary conditions for minimal border rank.
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210-test

T € A® B ® C concise tensor.

Tc(C*) C A® B.

Passes 210-test if dim((7¢(C*) ® A) N (S?(A) ® B)) > m.
Equivalent to previously known p = 1 Koszoul flattening equations.

We determined module structure of these equations for small m.
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111-test

The tensor T is said to pass 111-test if
dim((T4a(A*) @ A)N (Te(B*) @ B)N (Tc(C*) @ C)) > m.

So if dim((T4(A*) ® A) N (Tg(B*) ® B)) < m the tensor fails 111-test. These
are called two factor 111-tests.
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Consider the tensor(thanks to Joachim Jelisiejew) T; =

a1®(b1®Cg—|—b5®(:5)+a2®(b1®C4+bs®C5)+a3®(b2®63+b5®65)

+as @ (ba®@cy+b5R@¢5)+as® (b1 ®c1+ba®ca+b3®c3+ by ®cy+ b5 @ cs).

e T'j satisfies Strassen's equations.

@ Known to be not minimal border rank using techniques from Deformation
Theory, not polynomial.

o Fails 111-test, polynomial criterion.
@ T'; in fact fails two factor 111-test.
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Geometric Interpretation

Let gr := {z € gl(A) ® gl(B) @ gl(C)|x.T = 0} be the symmetry lie algebra of T
and gap = {z € gl(A) @ gl(B)|z.T = 0}. Similarly ggc and gac.

Proposition
If T is of minimal border rank then dim(gr) > 2m.

Proposition
The tensor T' passes all two factor 111-tests if and only if dim(gr) > 2m and
dim(gap),dim(gpc), dim(gac) > m.
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Work in Progress

@ Understanding geometric significance of 111-test and possibly higher tests.

e Finding the GL(A) x GL(B) x GL(C)-module structure of the equations
originating from these tests.

This is joint work(in progress) with Prof. JM Landsberg.
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Towards m=5, 14-generic case

In this case T is 1 4-generic and concise.
@ Already solved, Question 3 for m=5.[Landsberg, Michalek]

@ Known answer: Strassen's equations together with end closed condition.

Theorem (J. Jelisiejew, K. Sivic)

The closure of the space of 4-tuple of 5 x 5 commuting matrices is not irreducible
and has exactly two components.

The principal component is the closure of simultaneously diagonalizable matrices
and one other bad component. Further Ty, (A*) belongs to the bad component.
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Work in Progress

@ Any general point of the bad component fails 111-test and so non minimal
border rank. Its boundary falls in the principal component.

o Extending same technique for m = 6 and answering Question 3 for m = 6.
There are 3 bad components for m = 6.

This is joint work(in progress) with Prof. JM Landsberg and Prof. Joachim
Jelisiejew.
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m=>5, 1-degenerate

Theorem ([Friedland], Thm 3.1)

Let T € A® B® C be 1¢-degenerate and rank of elements of T¢(C*) are
bounded by m — 1 but not by m — 2. Then there exist bases of A, B, C' such that,
letting X1, -+ , X, be a basis of Tc:(C*) as a space of matrices,

~ (ldp_1 0
_ Xm €1
e X <em—1 0)

Q Forall2<s<m~—1, XS:<)BS 8).

Here e; = (1,0,---,0)t € C™~ 1, em~t =(0,0,---,1) € Cm~ 1%,

X; € Mat(m_1)x(m-1)-

Moreover, let Up = (xJ,e1]j € Z>o) C C™~! and

U = <€m_1X1J;,L|j € Z20> Cc C™=*. Then em_lUR =0,Uge; =0 and
x;Upr=0=Urxs for2 <s<m—1.
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m=>5, 1-degenerate

1 0 0 00 0 0 0 01
01000 2 23 22 0 0
Xi=[0 01 0 0], Xs=|2% 3 23 0 0],
00 010 0 23 23 0 0
0 0 0 0O 0 0 0 1 0
0 ps us x5 O
0 ¢ wvs ys O
Xs=|0 7 ws 25 O
0 0 0 0 0
0 0 0 0 O
For s =2,3,4.
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Cases to consider

Case: 73 # 0 and 23 =0

10 0 00 0 0 0 01 00 0 2, O

01 0 0O 1 22 22 0 0 0 0 0 ys O
X;=|0 0 1 0 0], Xs=[0 23 23 0 0|, Xs=|0 0 0 2, O

000 10 0 0 0 0 O 0 00 0 O

0 0 0 0O 0 0 0 1 0 00 0 0 O
For s =2,3,4.

It turns out in this case the tensor is always 1 4-generic.
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Cases to consider

Case: 23 =24 =0

1 0 0 0 O 0 0 0 01
01 0 0 O 1 22 22 0 0
X;=|0 01 0 0], Xs=[0 0 23 0 0],
00 0 1 0 0O 0 0 00
00 0 0 O 0 0 0 1 0
0 0 wus x5 O
0 0 wvs ys O
X,=|0 0 ws zs O
00 0 0 0
00 0 0 0
For s =2,3,4.

This case is not automatic. Needs further analysis.
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Cases to consider

R S
Case: 2{ =25 =0

1 0 0 00O 0 0 0 01
01 0 0 O 0 23 22 0 0
X;=|0 0 1 0 0], Xs=|0 23 23 0 0],
00 0 1 0 0 0 0 00
00 0 0 O 0 0 0 10
0 ps us zs O
0 g5 vs ys O
Xs=|0 7 ws 2z O
0 0 O 0 O
0 0 O 0 0
For s =2,3,4.

This case is not automatic. Needs further analysis.
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Work in Progress

@ Do the remaining calculations for those cases.

o Extending these techniques using this normal form for dimension 6 and
answer the same question for m = 6.

This is joint work(in progress) with Prof. JM Landsberg.
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Thank you

Thank you!
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