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Simultaneously Diagonalizable Matrices

Let M1, · · · ,Mm be m simultaneously diagonalizable m×m matrices.

Classical Problem
Classify the closure of the space of a finite number of simultaneously
diagonalizable matrices.

Known Results

End Closed Condition: Known since 1960.[Gerstenhaber]

Flag Condition: Appeared in 1997.[ Burgisser, Clausen, Shokrollahi]
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Definitions

Let T ∈ A⊗B ⊗ C.
T can be seen as a linear map TA : A∗ → B ⊗ C. Similarly TB and TC .

Definition

The rank of a tensor T , denoted R(T ), is the smallest r such that
T =

∑r
i=1 ai ⊗ bi ⊗ ci.

Definition

The border rank of a tensor T , denoted R(T ), is the smallest r such that
T = lim

ε→0
Tε where R(Tε) = r.

Definition
The tensor T is called concise if TA, TB and TC are of full rank.
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Questions

Assume dim(A) = dim(B) = dim(C) = m and T ∈ A⊗B ⊗ C.

Question 1

Find equations for the set of border rank at most m tensors.

Question 1 is answered up to dimension m=4.[Friedland]

Assuming T is concise, minimal possible border rank for T is m.

Question 2

Find equations for the set of concise minimal border rank tensors.

Under a natural genericity condition this question is same as characterizing the
closure of simultaneously diagonalizable matrices.
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Questions

B ⊗ C is identified with linear maps from B∗ to C, Hom(B∗, C).

Definition

T is called 1A-generic(similarly 1B and 1C) if there exist x ∈ A∗ such that TA(x)
is invertible. T is called 1∗-generic if it is 1A, 1B or 1C-generic.

If T is 1∗-generic then we reduce to the previous classical problem of classifying
the closure of simultaneously diagonalizable matrices.

Question 3

Find equations for the set of concise, 1∗-generic, minimal border rank tensors.

Question 3 is answered for m = 5.[Landsberg, Michalek]
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Explanation

Let T be concise, 1A-generic, and α1, · · · , αm be a basis of A∗ with TA(α1) full
rank. Consider IdB∗ , TA(α1)

−1TA(α2), · · · , TA(α1)
−1TA(αm) ∈ Hom(B∗, B∗).

If T is of rank m then note that TA(α1)
−1TA(α2), · · · , TA(α1)

−1TA(αm) needs
to be simultaneously diagonalizable matrices. This is basically consequence of
Strassen’s equations.

Thus if T is of border rank m then TA(α1)
−1TA(α2), · · · , TA(α1)

−1TA(αm) has
to be in the closure of the space of simultaneously diagonalizable tuple of matrices.
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Motivation

Question 1 is finding equations for the secant variety,
σm(CPm−1 × CPm−1 × CPm−1).

Complexity Theory: Latest bound on the exponent of matrix multiplication is
achieved through Coppersmith-Winograd tensor. Which is a concise minimal
border rank tensor.

Classical Linear Algebra: Closure of simultaneously diagonalizable matrices.

Algebraic Geometry: Hilbert schemes and Quot Schemes.
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Strassen’s Equations

Simultaneously diagonalizable =⇒ Commuting.

Theorem ([Strassen])

Let X1, X2 and Y be in TA(A
∗). If T is of minimal border rank then

X1adj(Y )X2 −X2adj(Y )X1 = 0.

Assuming T 1∗-generic, we can take Y to be of full rank and in particular identity
matrix. Then Strassen’s Equations precisely reduces to commuting criterion of X1

and X2.

These are necessary conditions a tensor must satisfy in order to be of minimal
border rank.
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Border Apolarity

A new paper, Apolarity, Border Rank and Multigraded Hilbert Schemes by
Weronika Buczynska and Jaroslaw Buczynski[Buczynska, Buczynski], gives a new
series of necessary conditions for minimal border rank.
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210-test

T ∈ A⊗B ⊗ C concise tensor.

TC(C
∗) ⊂ A⊗B.

Passes 210-test if dim((TC(C
∗)⊗A) ∩ (S2(A)⊗B)) ≥ m.

Equivalent to previously known p = 1 Koszoul flattening equations.

We determined module structure of these equations for small m.
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111-test

The tensor T is said to pass 111-test if
dim((TA(A

∗)⊗A) ∩ (TB(B
∗)⊗B) ∩ (TC(C

∗)⊗ C)) ≥ m.

So if dim((TA(A
∗)⊗A) ∩ (TB(B

∗)⊗B)) < m the tensor fails 111-test. These
are called two factor 111-tests.
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Example

Consider the tensor(thanks to Joachim Jelisiejew) TJ =

a1 ⊗ (b1 ⊗ c3 + b5 ⊗ c5) + a2 ⊗ (b1 ⊗ c4 + b5 ⊗ c5) + a3 ⊗ (b2 ⊗ c3 + b5 ⊗ c5)

+a4 ⊗ (b2 ⊗ c4 + b5 ⊗ c5) + a5 ⊗ (b1 ⊗ c1 + b2 ⊗ c2 + b3 ⊗ c3 + b4 ⊗ c4 + b5 ⊗ c5).

TJ satisfies Strassen’s equations.

Known to be not minimal border rank using techniques from Deformation
Theory, not polynomial.

Fails 111-test, polynomial criterion.

TJ in fact fails two factor 111-test.
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Geometric Interpretation

Let gT := {x ∈ gl(A)⊕ gl(B)⊕ gl(C)|x.T = 0} be the symmetry lie algebra of T
and gAB := {x ∈ gl(A)⊕ gl(B)|x.T = 0}. Similarly gBC and gAC .

Proposition

If T is of minimal border rank then dim(gT ) ≥ 2m.

Proposition

The tensor T passes all two factor 111-tests if and only if dim(gT ) ≥ 2m and
dim(gAB),dim(gBC),dim(gAC) ≥ m.
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Work in Progress

Understanding geometric significance of 111-test and possibly higher tests.

Finding the GL(A)× GL(B)× GL(C)-module structure of the equations
originating from these tests.

This is joint work(in progress) with Prof. JM Landsberg.
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Towards m=5, 1A-generic case

In this case T is 1A-generic and concise.

Already solved, Question 3 for m=5.[Landsberg, Michalek]

Known answer: Strassen’s equations together with end closed condition.

Theorem (J. Jelisiejew, K. Sivic)

The closure of the space of 4-tuple of 5× 5 commuting matrices is not irreducible
and has exactly two components.
The principal component is the closure of simultaneously diagonalizable matrices
and one other bad component. Further TJA(A

∗) belongs to the bad component.
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Work in Progress

Any general point of the bad component fails 111-test and so non minimal
border rank. Its boundary falls in the principal component.

Extending same technique for m = 6 and answering Question 3 for m = 6.
There are 3 bad components for m = 6.

This is joint work(in progress) with Prof. JM Landsberg and Prof. Joachim
Jelisiejew.
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m=5, 1-degenerate

Theorem ([Friedland], Thm 3.1)

Let T ∈ A⊗B ⊗ C be 1C-degenerate and rank of elements of TC(C
∗) are

bounded by m− 1 but not by m− 2. Then there exist bases of A,B,C such that,
letting X1, · · · , Xm be a basis of TC(C

∗) as a space of matrices,

1 X1 =

(
Idm−1 0

0 0

)
2 Xm =

(
xm e1
em−1 0

)
3 For all 2 ≤ s ≤ m− 1, Xs =

(
xs 0
0 0

)
.

Here e1 = (1, 0, · · · , 0)t ∈ Cm−1, em−1 = (0, 0, · · · , 1) ∈ Cm−1∗,
xj ∈Mat(m−1)×(m−1).
Moreover, let UR = 〈xjme1|j ∈ Z≥0〉 ⊂ Cm−1 and
UL = 〈em−1xjm|j ∈ Z≥0〉 ⊂ Cm−1∗. Then em−1UR = 0, ULe1 = 0 and
xsUR = 0 = ULxs for 2 ≤ s ≤ m− 1.
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m=5, 1-degenerate

X1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

, X5=


0 0 0 0 1
x21 x22 x23 0 0
x31 x32 x33 0 0
0 x42 x43 0 0
0 0 0 1 0

,

Xs =


0 ps us xs 0
0 qs vs ys 0
0 rs ws zs 0
0 0 0 0 0
0 0 0 0 0


For s = 2, 3, 4.
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Cases to consider

Case: x32 6= 0 and x43 = 0

X1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

, X5=


0 0 0 0 1
1 x22 x23 0 0
0 x32 x33 0 0
0 0 0 0 0
0 0 0 1 0

, Xs =


0 0 0 xs 0
0 0 0 ys 0
0 0 0 zs 0
0 0 0 0 0
0 0 0 0 0


For s = 2, 3, 4.

It turns out in this case the tensor is always 1A-generic.
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Cases to consider

Case: x32 = x43 = 0

X1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

, X5=


0 0 0 0 1
1 x22 x23 0 0
0 0 x33 0 0
0 0 0 0 0
0 0 0 1 0

,

Xs =


0 0 us xs 0
0 0 vs ys 0
0 0 ws zs 0
0 0 0 0 0
0 0 0 0 0


For s = 2, 3, 4.

This case is not automatic. Needs further analysis.
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Cases to consider

Case: x21 = x43 = 0

X1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

, X5=


0 0 0 0 1
0 x22 x23 0 0
0 x32 x33 0 0
0 0 0 0 0
0 0 0 1 0

,

Xs =


0 ps us xs 0
0 qs vs ys 0
0 rs ws zs 0
0 0 0 0 0
0 0 0 0 0


For s = 2, 3, 4.

This case is not automatic. Needs further analysis.

Pal Texas A&M University 21 / 24



Work in Progress

Do the remaining calculations for those cases.

Extending these techniques using this normal form for dimension 6 and
answer the same question for m = 6.

This is joint work(in progress) with Prof. JM Landsberg.

Pal Texas A&M University 22 / 24



Thank you

Thank you!
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