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Definitions

Let T ∈ A⊗B ⊗ C.
T can be seen as a linear map TA : A∗ → B ⊗ C. Similarly TB and TC .

Definition

The rank of a tensor T , denoted R(T ), is the smallest r such that
T =

∑r
i=1 ai ⊗ bi ⊗ ci.

Definition

The border rank of a tensor T , denoted R(T ), is the smallest r such that
T = lim

ϵ→0
Tϵ where R(Tϵ) = r.

Example?

Definition
The tensor T is called concise if TA, TB and TC are injective.
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Questions

Assume dim(A) = dim(B) = dim(C) = m and T ∈ A⊗B ⊗ C.

Question 1

Find equations for the set of tensors of border rank at most m.

Question 1 is answered up to dimension m=4.[Friedland]

Assuming T is concise, minimal possible border rank for T is m.

Question 2

Find equations for the set of concise minimal border rank tensors.

Under a natural genericity condition this question is same as characterizing the
closure of simultaneously diagonalizable matrices.
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Questions

B ⊗ C is identified with linear maps from B∗ to C, Hom(B∗, C).

Definition

T is called 1A-generic(similarly 1B and 1C) if there exist α ∈ A∗ such that TA(α)
is full rank. T is called 1∗-generic if it is 1A, 1B or 1C-generic.

If T is 1∗-generic then we reduce to the a classical problem of classifying the
closure of simultaneously diagonalizable matrices.

Question 3

Find equations for the set of concise, 1∗-generic, minimal border rank tensors.

Question 3 is answered for m = 5.[Landsberg, Michalek]
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Simultaneously Diagonalizable Matrices

Let M1, · · · ,Mm be m simultaneously diagonalizable m×m matrices.

Classical Problem
Characterize the closure of the space of a m-tuple of simultaneously
diagonalizable matrices.

Known Results

End Closed Condition: Known since 1960.[Gerstenhaber]

Let T be 1A-generic and concise, then it’s of minimal border rank ⇐⇒
TA(A

∗)TA(α)
−1 ⊂ End(C) is in the closure of the space of simultaneously

diagonalizable matrices.
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Motivation

Question 1 is finding equations for the secant variety,
σm(Seg(CPm−1 × CPm−1 × CPm−1)).

Complexity Theory: Latest bound on the exponent of matrix multiplication is
achieved through Coppersmith-Winograd tensor. Which is a concise minimal
border rank tensor.

Classical Linear Algebra: Closure of simultaneously diagonalizable matrices.

Algebraic Geometry: Hilbert schemes and Quot Schemes.
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Salmon Prize Problem

In 2007, E. Allman offered a prize of smoked Alaskan copper river salmon to
anyone who could find the defining ideal of the following secant variety:

σ4(Seg(P3 × P3 × P3))
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Strassen’s Equations

Simultaneously diagonalizable =⇒ Commuting.

Theorem ([Strassen])

Let X1, X2 and Y be in TA(A
∗). If T is of minimal border rank then

adj(Y )X1adj(Y )X2 − adj(Y )X2adj(Y )X1 = 0.

Assuming T 1∗-generic, we can take Y to be of full rank and in particular identity
matrix. Then Strassen’s Equations precisely reduces to commuting criterion of X1

and X2.

These are necessary conditions a tensor must satisfy in order to be of minimal
border rank.
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Towards m=5 and 6, 1A-generic case

In this case T is 1A-generic and concise.

Already solved, Question 3 for m = 5.[Landsberg, Michalek]

Known answer: Strassen’s equations together with end closed condition.

Theorem (J. Jelisiejew, K. Sivic)

The closure of the space of 4-tuple of 5× 5 commuting matrices is not irreducible
and has exactly two components.
The principal component is the closure of simultaneously diagonalizable matrices
and one other component.

Upshot: This extends to m = 6 and the same remains true!
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New Development

Theorem (Jelisiejew, Landsberg, P)

Let T ∈ Cm ⊗Cm ⊗Cm, where m = 5, 6, be a concise 1∗-generic tensor. Then T
is of minimal border rank if and only if T satisfies Strassen’s equations and End
Closed condition.

Outline?

Does not extend to m = 7. Explicit example in Abelian
Tensors[Landsberg, Michalek].

Does not make sense for 1-degenerate tensors.
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Another Direction

A new paper, Apolarity, border rank and multigraded Hilbert scheme by Weronika
Buczynska and Jaroslaw Buczynski[Buczynska, Buczynski], gives new necessary
conditions for minimal border rank.
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111-test

The tensor T is said to pass 111-test if
dim((TA(A

∗)⊗A) ∩ (TB(B
∗)⊗B) ∩ (TC(C

∗)⊗ C)) ≥ m.

Definition
If T satisfies the above inequality then T is called 111-abundant and if it satisfies
without excess, i.e. the above inequality becomes equality then we say T is
111-sharp.

Theorem (Jelisiejew, Landsberg, P)

Let T ∈ Cm ⊗Cm ⊗Cm, where m = 5, 6, be a concise 1∗-generic tensor. Then T
is of minimal border rank if and only if T is 111-abundant.
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Towards m = 5, 1-degenerate case

Wish: 111-test remains sufficient for 1-degenerate tensors.

Theorem (Jelisiejew, Landsberg, P)

When m ≤ 5, the set of concise minimal border rank tensors in Cm ⊗Cm ⊗Cm is
the zero set of the 111-equations.
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Things getting wild...

Up to the action of GL5(C)×3 ⋊ S3 there are exactly 5 concise 1-degenerate
minimal border rank tensors in C5 ⊗ C5 ⊗ C5 and those are:

TO58
=


x1 x2 x3 x5

x5 x1 x4 −x2

x1

−x5 x1

x5

 , TO57
=


x1 x2 x3 x5

x1 x4 −x2

x1

x1

x5

 ,

TO56
=


x1 x2 x3 x5

x1 + x5 x4

x1

x1

x5

 , TO55
=


x1 x2 x3 x5

x1 x5 x4

x1

x1

x5

 ,

TO54 =


x1 x2 x3 x5

x1 x4

x1

x1

x5

 .
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Things getting wild...

Definition

The smoothable rank of a tensor T ∈ A⊗B ⊗ C, denoted S(T ), is the minimal
degree of a zero dimensional scheme Spec(R) ⊆ PA× PB × PC such that
T ∈ ⟨Spec(R)⟩.

In general R(T ) ≥ S(T ) ≥ R(T ). If S(T ) > R(T ) then T is called a wild tensor.

Theorem

In C5 ⊗ C5 ⊗ C5 concise, minimal border rank, wild tensors are precisely
TO58 , TO57 , TO56 , TO55 , TO54 .
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Thank you!!!
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Algorithm

For T ∈ A⊗B ⊗ C a concise tensor

Definition

Ann(T ) = {x ∈ Sym(A∗)⊗ Sym(B∗)⊗ Sym(C∗)|x.T = 0}

1 I ⊂ Ann(T ) i.e. I110 ⊂ T (C∗)⊥, etc. and I111 ⊂ T⊥

2 For all i, j, k such that i+ j + k > 1, then codim Iijk = m

3 The image of the multiplication map
Ii−1,j,k ⊗A∗ ⊕ Ii,j−1,k ⊗B∗ ⊕ Ii,j,k−1 ⊗ C∗ → SiA∗ ⊗ SjB∗ ⊗ SkC∗ is
contained in Iijk

We refer to the codimension criterion at (i, j, k) grade as ijk-test.

back
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Reduction to Diagonalization

Let T ∈ A⊗B ⊗ C concise, 1A-generic, and α1, · · · , αm a basis of A∗ with
TA(α1) full rank. Consider ⟨IdB∗ ,M2, · · · ,Mm⟩ ⊂ Hom(B∗, B∗), where
Mi = TA(α1)

−1TA(αi).

T is rank m ⇐⇒ Mi’s simultaneously diagonalizable.

T is border rank m ⇐⇒ Mi’s are in the closure of the space of
simultaneously diagonalizable matrices.

back
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Apolarity Lemma

Let S = C[x1, . . . , xn] and T = C[y1, . . . , yn]. Define T action on S as
yi · xj =

∂
∂xi

xj .

Let f ∈ Sd and f⊥ := {t ∈ T |t · f = 0} be called the apolar ideal of f.

Apolarity Lemma

f ∈ ⟨ld1 , . . . , ldr⟩ ⇐⇒ f⊥ contains an ideal of r distinct points.

back
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End Closed Condition

End Closed Condition

Let T ∈ A⊗B ⊗ C be a concise 1A-generic tensor and α ∈ A∗ such that TA(α)
has full rank. Then T (α)−1TA(A

∗) is a subalgebra of Hom(B∗, B∗).

back
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Flag Condition

Flag Condition

Let T ∈ A⊗B ⊗ C be a concise tensor. Then if R(T ) = m there exist
A1 ⊂ A2 ⊂ · · ·Am = A∗ such that dim(Ai) = i and TA(Ai) ⊂ σi(PB × PC).

back
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m=5, 1-degenerate

Theorem ([Friedland], Thm 3.1)

Let T ∈ A⊗B ⊗ C be 1C-degenerate and rank of elements of TC(C
∗) are

bounded by m− 1 but not by m− 2. Then there exist bases of A,B,C such that,
letting X1, · · · , Xm be a basis of TC(C

∗) as a space of matrices,

1 X1 =

(
Idm−1 0

0 0

)
2 Xm =

(
xm e1
em−1 0

)
3 For all 2 ≤ s ≤ m− 1, Xs =

(
xs 0
0 0

)
.

Here e1 = (1, 0, · · · , 0)t ∈ Cm−1, em−1 = (0, 0, · · · , 1) ∈ Cm−1∗,
xj ∈ Mat(m−1)×(m−1).
Moreover, let UR = ⟨xj

me1|j ∈ Z≥0⟩ ⊂ Cm−1 and
UL = ⟨em−1xj

m|j ∈ Z≥0⟩ ⊂ Cm−1∗. Then em−1UR = 0, ULe1 = 0 and
xsUR = 0 = ULxs for 2 ≤ s ≤ m− 1.

back
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Rank vs Border Rank

Consider: T = (e1 ⊗ e1 ⊗ e2) + (e1 ⊗ e2 ⊗ e1) + e2 ⊗ e1 ⊗ e1) ∈ C2 ⊗ C2 ⊗ C2.

Rank 3 as

(
a b
b 0

)
, a, b ∈ C can not be written as sum of two rank one matrices.

Border rank 2 as T (ϵ) = 1
ϵ [(e1 + ϵe2)⊗ (e1 + ϵe2)⊗ (e1 + ϵe2)− e1 ⊗ e1 ⊗ e1]

and T (ϵ) → T as ϵ → 0.

back
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Conciseness Restated

Let T ∈ A⊗B ⊗ C and T =
∑r

i=1 ai ⊗ bi ⊗ ci be a rank decomposition.

Definition

T is concise if {a1, · · · , ar} spans A, {b1, · · · , br} spans B, and {c1, · · · , cr}
spans C.

back
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Secant Variety

Working over C.
The join of two varieties Y, Z ⊂ PV is J(Y,Z) = ∪x∈Y,y∈Z,x̸=yP1

xy.
The r-th secant variety of a variety X ⊂ PV is

σr(X) = ∪P1,··· ,Pr∈X⟨P1, · · · , Pr⟩ = J(Y, J(Y, · · · ))

Fact: Joins and Secants of irreducible varieties are irreducible.
Fact: X = Seg(PV1 × · · · × PVn), then Euclidean and Zariski closure of X agree
for σr(X).
Sketch:

Euclidean closure is contained in Zariski closure.

Z an irreducible variety and U ⊂ Z a Zariski open subset then U = Z in
terms of Zariski closure and Euclidean closure.

For X take U to be set of rank at most r tensors.
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Secant Variety

Expected Dimension:

For σr(X) is min{rn+ r − 1, N}, where X ⊂ PN and dim(X) = n.

Defect δr := rn+ r − 1− dimσr(X).

Theorem (Terracini’s Lemma)

Let P1, · · · , Pr ∈ X be general points and P ∈ ⟨P1, · · · , Pr⟩ ⊂ σr(X) a general
point. Then

TP (σr(X)) = ⟨TP1
(X), · · · , TPr

(X)⟩

Consequence: δr(Seg(PA× PB)) = r2 − r
Consequence: m > 2 and r ≤ min{dimVi} then σr(Seg(PV1 × · · · × PVm)) is
not defective.

back
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Outline of the Proof

Fact: For a finite algebra A =
∏

At, with At local. Algebra A can be generated
by q elements if and only if HAt

(1) ≤ t for all t.

For m=5: Let T be 1A-generic with TA(α0) full rank and
E = TA(A

∗)TA(α0)
−1 ⊂ End(C) space of commuting matrices.

Gives C an S := C[y1, · · · , y4]-module structure.
S/Ann(C) ∼= E = ⟨x1, · · · , x5⟩

Case-I: E contains an element with more than one eigenvalue.
That implies(by Lemma 3.12 of Components and Singularities paper)
S/Ann(C) ∼=

∏
t S/Kt, non-trivial product of local algebras and

dim(E) = 5 =⇒ dim(S/Kt) ≤ 4 =⇒ HS/Kt
(1) ≤ 3. Thus E can be generated

by at most 3 matrices.

Case-II:All elements of E are nilpotent.
Then HE(0) = 1, HE(1) ≥ 4 =⇒ HE(2) = 0. Then by Thm 6.14 of
Components and Singularities of Commuting Matrices-J,S paper this tuple is in
the closure of the tuple of simultaneously diagonalizable matrices.

back
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Friedland’s Normal Form

Theorem ([Friedland], Thm 3.1)

Let T ∈ A⊗B ⊗ C be 1A-degenerate and rank of elements of TA(A
∗) are

bounded by m− 1 but not by m− 2. Then there exist bases of A,B,C such that,
letting X1, · · · , Xm be a basis of TA(A

∗) as a space of matrices,

1 X1 =

(
Idm−1 0

0 0

)
2 Xm =

(
xm ω
α 0

)
3 For all 2 ≤ s ≤ m− 1, Xs =

(
xs 0
0 0

)
.

Here ω ∈ Cm−1, α ∈ C(m−1)∗, xm,xs ∈ Mat(m−1)×(m−1).
Moreover, αxj

mω = 0 for all j, and letting UR = ⟨xj
mω|j ∈ Z≥0⟩ ⊂ Cm−1 and

UL = ⟨αxj
m|j ∈ Z≥0⟩ ⊂ C(m−1)∗. Then xsUR = 0 = ULxs for 2 ≤ s ≤ m− 1.
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