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Let Te AR B C.
T can be seen as a linear map T4 : A* — B® C. Similarly Tg and T¢.

The rank of a tensor T, denoted R(T'), is the smallest 7 such that
T = Z::l a; ®b; R c;.

The border rank of a tensor T', denoted R(T'), is the smallest r such that
T= lin(1)T€ where R(T,) = r.
€E—>

Example?

The tensor T is called concise if T4, T and T are injective.
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Assume dim(A4) = dim(B) = dim(C) =mand T € A B® C.
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Assume dim(A4) = dim(B) = dim(C) =mand T € A B® C.

Question 1
Find equations for the set of tensors of border rank at most m.

Question 1 is answered up to dimension m=4.[Friedland|

Assuming T is concise, minimal possible border rank for T" is m.

Question 2
Find equations for the set of concise minimal border rank tensors.

Under a natural genericity condition this question is same as characterizing the
closure of simultaneously diagonalizable matrices.
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B ® C is identified with linear maps from B* to C, Hom(B*,C).
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B ® C is identified with linear maps from B* to C, Hom(B*,C).

T is called 14-generic(similarly 15 and 1¢) if there exist a € A* such that T4 ()
is full rank. T is called 1.-generic if it is 14, 1p or 1o-generic.
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B ® C is identified with linear maps from B* to C, Hom(B*,C).

T is called 14-generic(similarly 15 and 1¢) if there exist a € A* such that T4 ()
is full rank. T is called 1.-generic if it is 14, 1p or 1o-generic.

If T is 1,-generic then we reduce to the a classical problem of classifying the
closure of simultaneously diagonalizable matrices.

Question 3

Find equations for the set of concise, 1.-generic, minimal border rank tensors.

Question 3 is answered for m = 5.[Landsberg, Michalek]
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Simultaneously Diagonalizable Matrices

Let My,---, M,, be m simultaneously diagonalizable m x m matrices.

Classical Problem
Characterize the closure of the space of a m-tuple of simultaneously
diagonalizable matrices.
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@ End Closed Condition: Known since 1960.[Gerstenhaber]
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Simultaneously Diagonalizable Matrices

Let My,---, M,, be m simultaneously diagonalizable m x m matrices.

Classical Problem
Characterize the closure of the space of a m-tuple of simultaneously
diagonalizable matrices.

@ End Closed Condition: Known since 1960.[Gerstenhaber] |

Let T be 14-generic and concise, then it's of minimal border rank <~
TaA(A*)Ta(a)~! C End(C) is in the closure of the space of simultaneously
diagonalizable matrices.
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@ Question 1 is finding equations for the secant variety,
O (Seg(CP™ ™ x CP™ ! x CP™71)).
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@ Question 1 is finding equations for the secant variety,
O (Seg(CP™ ™ x CP™ ! x CP™71)).

@ Complexity Theory: Latest bound on the exponent of matrix multiplication is
achieved through Coppersmith-Winograd tensor. Which is a concise minimal
border rank tensor.

@ Classical Linear Algebra: Closure of simultaneously diagonalizable matrices.

o Algebraic Geometry: Hilbert schemes and Quot Schemes.
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Salmon Prize Problem

In 2007, E. Allman offered a prize of smoked Alaskan copper river salmon to
anyone who could find the defining ideal of the following secant variety:

o4(Seg(P? x P3 x P?))




Strassen’s Equations

Simultaneously diagonalizable => Commuting.

Theorem ([Strassen))

Let X1, Xo andY be in Ta(A*). If T is of minimal border rank then
adj(Y) X adj(Y) X5 — adj(Y)Xzadj(Y) X, = 0.
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Theorem ([Strassen))

Let X1, Xo andY be in Ta(A*). If T is of minimal border rank then
adj(Y) X adj(Y) X5 — adj(Y)Xzadj(Y) X, = 0.

Assuming T 1,-generic, we can take Y to be of full rank and in particular identity
matrix. Then Strassen’s Equations precisely reduces to commuting criterion of X3
and XQ.
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Strassen’s Equations

Simultaneously diagonalizable => Commuting.

Theorem ([Strassen))

Let X1, Xo andY be in Ta(A*). If T is of minimal border rank then
adj(Y) X adj(Y) X5 — adj(Y)Xzadj(Y) X, = 0.

Assuming T 1,-generic, we can take Y to be of full rank and in particular identity
matrix. Then Strassen’s Equations precisely reduces to commuting criterion of X3
and XQ.

These are necessary conditions a tensor must satisfy in order to be of minimal
border rank.
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Towards m=5 and 6, 14-generic case

In this case T is 1 4-generic and concise.
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Towards m=5 and 6, 14-generic case

In this case T is 1 4-generic and concise.
@ Already solved, Question 3 for m = 5.[Landsberg, Michalek]

@ Known answer: Strassen's equations together with end closed condition.

Theorem (J. Jelisiejew, K. Sivic)

The closure of the space of 4-tuple of 5 X 5 commuting matrices is not irreducible
and has exactly two components.

The principal component is the closure of simultaneously diagonalizable matrices
and one other component.
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Towards m=5 and 6, 14-generic case

In this case T is 1 4-generic and concise.
@ Already solved, Question 3 for m = 5.[Landsberg, Michalek]

@ Known answer: Strassen's equations together with end closed condition.

Theorem (J. Jelisiejew, K. Sivic)

The closure of the space of 4-tuple of 5 X 5 commuting matrices is not irreducible
and has exactly two components.

The principal component is the closure of simultaneously diagonalizable matrices
and one other component.

Upshot: This extends to m = 6 and the same remains true!
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New Development

Theorem (Jelisiejew, Landsberg, P)

Let T € C™ ® C™ ® C™, where m = 5,6, be a concise 1,-generic tensor. Then T

is of minimal border rank if and only if T satisfies Strassen’s equations and End
Closed condition.

Outline?
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Let T € C™ ® C™ ® C™, where m = 5,6, be a concise 1,-generic tensor. Then T

is of minimal border rank if and only if T satisfies Strassen’s equations and End
Closed condition.

Outline?

@ Does not extend to m = 7. Explicit example in Abelian
Tensors[Landsberg, Michalek].
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New Development

Theorem (Jelisiejew, Landsberg, P)

Let T € C™ ® C™ ® C™, where m = 5,6, be a concise 1,-generic tensor. Then T

is of minimal border rank if and only if T satisfies Strassen’s equations and End
Closed condition.

Outline?

@ Does not extend to m = 7. Explicit example in Abelian
Tensors[Landsberg, Michalek].

@ Does not make sense for 1-degenerate tensors.
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Another Direction

A new paper, Apolarity, border rank and multigraded Hilbert scheme by Weronika
Buczynska and Jaroslaw Buczynski[Buczynska, Buczynski], gives new necessary
conditions for minimal border rank.

&M University



111-test

The tensor T is said to pass 111-test if
dim((T4a(A*) @ A)N (Te(B*) @ B)N (Tc(C*) @ C)) > m.

If T satisfies the above inequality then 7T is called 111-abundant and if it satisfies
without excess, i.e. the above inequality becomes equality then we say T is
111-sharp.
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The tensor T is said to pass 111-test if
dim((T4a(A*) @ A)N (Te(B*) @ B)N (Tc(C*) @ C)) > m.

If T satisfies the above inequality then 7T is called 111-abundant and if it satisfies
without excess, i.e. the above inequality becomes equality then we say T is
111-sharp.

Theorem (Jelisiejew, Landsberg, P)

Let T € C" @ C™ ® C™, where m = 5,6, be a concise 1,-generic tensor. Then T
is of minimal border rank if and only if T is 111-abundant.
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Towards m = 5, 1-degenerate case

Wish: 111-test remains sufficient for 1-degenerate tensors.
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Towards m = 5, 1-degenerate case

Wish: 111-test remains sufficient for 1-degenerate tensors.

Theorem (Jelisiejew, Landsberg, P)

When m < 5, the set of concise minimal border rank tensors in C™ @ C™ ® C™ s
the zero set of the 111-equations.
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Things getting wild...

Up to the action of GL5(C)*3 x S; there are exactly 5 concise 1-degenerate
minimal border rank tensors in C® @ C° ® C® and those are:
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Things getting wild...

Up to the action of GL5(C)*3 x S; there are exactly 5 concise 1-degenerate
minimal border rank tensors in C® @ C° ® C® and those are:

1 €2 x3 T Z T2 z3 Ts5
Ts5 T3 Ty —X2 Tr1 T4 —T2
Toss = T aTOm = T ,
—Trs X1 Z1
Is T5
Tl T2 T3 Ts T T2 T3 Tsp
xr1 + s Ty Tr1 Ty X4
TO55 = Z1 7T055 = Ty ,
T €1
T5 X5
€ T2 X3 Ts
x1 Ty
TO54 = Z1
X1

x5




Things getting wild...

The smoothable rank of a tensor T' € A ® B ® C, denoted S(T'), is the minimal
degree of a zero dimensional scheme Spec(R) C PA x PB x PC' such that
T € (Spec(R)).
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Things getting wild...

The smoothable rank of a tensor T' € A ® B ® C, denoted S(T'), is the minimal
degree of a zero dimensional scheme Spec(R) C PA x PB x PC' such that
T € (Spec(R)).

In general R(T') > S(T') > R(T). If S(T') > R(T') then T is called a wild tensor.

In C® @ C5 ® C® concise, minimal border rank, wild tensors are precisely
TO587 TO577 TO567 To T(954~

559
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Thank you!!!
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Algorithm

For T €¢ A® B ® C a concise tensor

Ann(T) = {z € Sym(A*) ® Sym(B*) ® Sym(C*)|x.T = 0}

Q@ I C Ann(T) ie. I;0 C T(C*)*, etc. and I1; C T
© For all 7,5,k such that 7 + j 4+ k£ > 1, then codim I;;;, = m

@ The image of the multiplication map 4
Ii—l,j,k RA*D Ii,j—l,k ® B* @ Ii,j,k—l QR C* — SLA* ® SIB*® S""C* is
contained in I,

We refer to the codimension criterion at (4, j, k) grade as ijk-test.

back
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Reduction to Diagonalization

Let T € A® B ® C concise, 14-generic, and «y,- -+ , oy, a basis of A* with
T4(cv) full rank. Consider (Idp«, Ma,---, My,) C Hom(B*, B*), where
]\/-[7, = TA(Oél)ilTA(Oli).

@ T is rank m <= M;'s simultaneously diagonalizable.

o T is border rank m <= M;'s are in the closure of the space of
simultaneously diagonalizable matrices.

back
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Apolarity Lemma

Let S = Clzy,...,2z,] and T = Cly1, . . ., yn]. Define T action on S as

e

Let f € Syand fL:={t € T|t- f =0} be called the apolar ideal of f.

Apolarity Lemma

fef,...,18y < f* contains an ideal of r distinct points.

back
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End Closed Condition

End Closed Condition

Let T € A® B® C be a concise 14-generic tensor and oz € A* such that T4 ()
has full rank. Then T'(a)~1T4(A*) is a subalgebra of Hom(B*, B*).

back
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Flag Condition

Flag Condition

Let T € A® B ® C be a concise tensor. Then if R(T) = m there exist
AL C Ay C --- A, = A" such that dlm(Al) =14 and TA(AZ) C O'Z‘(HDB X PC)

back
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m=>5, 1-degenerate

Theorem ([Friedland], Thm 3.1)

Let T € A® B ® C be 1¢-degenerate and rank of elements of T¢(C*) are
bounded by m — 1 but not by m — 2. Then there exist bases of A, B, C such that,
letting X1, -+, X, be a basis of Tc(C*) as a space of matrices,

~ (ldp_1 0
® Xi= < 0 0)

. Xm @1l
e X’rn _<€m1 0)

Q Forall2<s<m-—1, X, :()8“ 8)
Here e; = (1,0,---,0)t € C™~ 1, em~t =(0,0,---,1) € Cm~1¥,
X; € ]V[at(m_l)x(m 1)-
Moreover, let Ur = (x,e1]j € Z>o) C C™~! and
Up = (™ 1xJ |j € Z>o) C C™1*. Then e™ Ug = 0,Ure; =0 and
x,Ur =0 =Urx, for2§s§m—1.

back
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Rank vs Border Rank

Consider: T = (1 ®e; ®@ez) + (1 Rea ®ey) +ea ®e; ®ep) € C?2 @ C?w C2.

b . :
Rank 3 as (Z O)' a,b € C can not be written as sum of two rank one matrices.

Border rank 2 as T'(e) = %[(61 +eer)® (e1+€e2) @ (e1 +eea) —er ®ep ® eq]
and T'(e) - T as € — 0.

back
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Conciseness Restated

let Te A BRC and T = 22:1 a; ® b; ® ¢; be a rank decomposition.

T is concise if {ay,- - ,a,} spans A, {by,--- ,b.} spans B, and {c1,--- ,c.}
spans C.

back
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Secant Variety

Working over C.
The join of two varieties Y, Z C PV is J(Y, Z) = Uzevyez,ayPsy-
The r-th secant variety of a variety X C PV is

or(X) = Upy e prex (P, Pr) = J(Y, I (Y, ))

Fact: Joins and Secants of irreducible varieties are irreducible.
Fact: X = Seg(PV; x --- x PV,,), then Euclidean and Zariski closure of X agree

for o,.(X).
Sketch:

@ Euclidean closure is contained in Zariski closure.

@ Z an irreducible variety and U C Z a Zariski open subset then U = Z in
terms of Zariski closure and Euclidean closure.

@ For X take U to be set of rank at most r tensors.

as A&M University



Secant Variety

Expected Dimension:
e For 0,.(X) is min{rn +r — 1, N}, where X C PV and dim(X) = n.
Defect 6, :=rn+1r — 1 — dim o, (X).

Theorem (Terracini’s Lemma)

Let Py,---,P. € X be general points and P € (Py,--- ,P.) C 0.(X) a general
point. Then
Tp(or(X)) = (Tp,(X), -+, Tp, (X))

Consequence: §,(Seg(PA x PB)) =r? —r
Consequence: m > 2 and r < min{dim V;} then o, (Seg(PV} x --- x PV,;,)) is
not defective.

back
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Outline of the Proof

Fact: For a finite algebra A = [] A;, with A; local. Algebra A can be generated
by g elements if and only if H4,(1) < for all ¢.
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Outline of the Proof

Fact: For a finite algebra A = [] A;, with A; local. Algebra A can be generated
by g elements if and only if H4,(1) < for all ¢.

For m=5: Let T be 14-generic with T4 (ayp) full rank and

E =Ta(A*)Ta(ap)™! C End(C) space of commuting matrices.
Gives C an S Clyi, - -+ ,y4]-module structure.

S/Ann(C) = (961, S, T5)
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For m=5: Let T be 14-generic with T4 (ayp) full rank and

E =Ta(A*)Ta(ap)™! C End(C) space of commuting matrices.
Gives C an S := Clyy, - - - , y4]-module structure.

S/Ann(C) 2 E = (21, ,T5)

Case-l: E contains an element with more than one eigenvalue.

That implies(by Lemma 3.12 of Components and Singularities paper)

S/Ann(C) = 1], S/K, non-trivial product of local algebras and

dim(E) =5 = dim(S/K;) <4 = Hg/k,(1) <3. Thus E can be generated
by at most 3 matrices.
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Outline of the Proof

Fact: For a finite algebra A = [] A;, with A; local. Algebra A can be generated
by g elements if and only if H4,(1) < for all ¢.

For m=5: Let T be 14-generic with T4 (ayp) full rank and

E =Ta(A*)Ta(ap)™! C End(C) space of commuting matrices.
Gives C an S := Clyy, - - - , y4]-module structure.

S/Ann(C) 2 E = (21, ,T5)

Case-l: E contains an element with more than one eigenvalue.

That implies(by Lemma 3.12 of Components and Singularities paper)

S/Ann(C) = 1], S/K, non-trivial product of local algebras and

dim(E) =5 = dim(S/K;) <4 = Hg/k,(1) <3. Thus E can be generated
by at most 3 matrices.

Case-ll: All elements of E are nilpotent.

Then Hg(0) =1, Hg(1) >4 = Hg(2) =0. Then by Thm 6.14 of
Components and Singularities of Commuting Matrices-J,S paper this tuple is in
the closure of the tuple of simultaneously diagonalizable matrices.

back
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Friedland’s Normal Form

Theorem ([Friedland], Thm 3.1)

Let T € A® B ® C be 14-degenerate and rank of elements of T4 (A*) are
bounded by m — 1 but not by m — 2. Then there exist bases of A, B, C' such that,

letting X1, -+, X, be a basis of Ty(A*) as a space of matrices,
_ /danl 0
® Xi= < 0 0)

Xn), w
° %% 3)

Q Forall2<s<m—1, X, :(’B 8).
Here w e C~ !, a e Cm=D* x,. x, € Mat(y,—1)x (m—1)-
Moreover, axi,w = 0 for all j, and letting Ur = (xJ w|j € Z>o) C C™~! and
U, = {axi |j € Z>o) C Cm=D* Then x,Ur =0=Urxs for2<s<m — 1.

m
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