Concise Tensors of Minimal Border Rank

Arpan Pal

Texas A&M University, College Station, TX

Oct 7, 2022

Pal Texas A&M University

- E F

Let $T \in A \otimes B \otimes C$.

T can be seen as a linear map $T_A: A^* \to B \otimes C$. Similarly T_B and T_C .

E 990

イロト イポト イヨト イヨト

Let $T \in A \otimes B \otimes C$.

T can be seen as a linear map $T_A: A^* \to B \otimes C$. Similarly T_B and T_C .

Definition

The rank of a tensor T, denoted $\mathbf{R}(T)$, is the smallest r such that $T = \sum_{i=1}^{r} a_i \otimes b_i \otimes c_i$.

(4 間 と 4 き と 4 き と

Let $T \in A \otimes B \otimes C$. T can be seen as a linear map $T_A : A^* \to B \otimes C$. Similarly T_B and T_C .

Definition

The rank of a tensor T, denoted $\mathbf{R}(T)$, is the smallest r such that $T=\sum_{i=1}^r a_i\otimes b_i\otimes c_i.$

Definition

The *border rank* of a tensor T, denoted $\underline{\mathbf{R}}(T)$, is the smallest r such that $T = \lim_{\epsilon \to 0} T_{\epsilon}$ where $\mathbf{R}(T_{\epsilon}) = r$.

Example?

イロト イポト イヨト イヨト

= 990

Let $T \in A \otimes B \otimes C$. T can be seen as a linear map $T_A : A^* \to B \otimes C$. Similarly T_B and T_C .

Definition

The rank of a tensor T, denoted $\mathbf{R}(T)$, is the smallest r such that $T = \sum_{i=1}^{r} a_i \otimes b_i \otimes c_i$.

Definition

The *border rank* of a tensor T, denoted $\underline{\mathbf{R}}(T)$, is the smallest r such that $T = \lim_{\epsilon \to 0} T_{\epsilon}$ where $\mathbf{R}(T_{\epsilon}) = r$.

Example?

Definition

The tensor T is called *concise* if T_A , T_B and T_C are injective.

< A ▶

Assume $\dim(A) = \dim(B) = \dim(C) = m$ and $T \in A \otimes B \otimes C$.

999

3

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

Assume $\dim(A) = \dim(B) = \dim(C) = m$ and $T \in A \otimes B \otimes C$.

Question 1

Find equations for the set of tensors of border rank at most m.

イロト イポト イヨト イヨト

Assume $\dim(A) = \dim(B) = \dim(C) = m$ and $T \in A \otimes B \otimes C$.

Question 1

Find equations for the set of tensors of border rank at most m.

Question 1 is answered up to dimension m=4.[Friedland]

不得 とうほう うまと

Assume $\dim(A) = \dim(B) = \dim(C) = m$ and $T \in A \otimes B \otimes C$.

Question 1

Find equations for the set of tensors of border rank at most m.

Question 1 is answered up to dimension m=4.[Friedland]

Assuming T is concise, minimal possible border rank for T is m.

▲御▶ ▲屋▶ ▲屋▶

Assume $\dim(A) = \dim(B) = \dim(C) = m$ and $T \in A \otimes B \otimes C$.

Question 1

Find equations for the set of tensors of border rank at most m.

Question 1 is answered up to dimension m=4.[Friedland]

Assuming T is concise, minimal possible border rank for T is m.

Question 2

Find equations for the set of concise minimal border rank tensors.

Assume $\dim(A) = \dim(B) = \dim(C) = m$ and $T \in A \otimes B \otimes C$.

Question 1

Find equations for the set of tensors of border rank at most m.

Question 1 is answered up to dimension m=4.[Friedland]

Assuming T is concise, minimal possible border rank for T is m.

Question 2

Find equations for the set of concise minimal border rank tensors.

Under a natural genericity condition this question is same as characterizing the closure of simultaneously diagonalizable matrices.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $B\otimes C$ is identified with linear maps from B^* to C, $\operatorname{Hom}(B^*,C)$.

イロト イ部ト イヨト イヨト

590

Ξ

 $B\otimes C$ is identified with linear maps from B^* to C, $\operatorname{Hom}(B^*,C)$.

Definition

T is called 1_A -generic(similarly 1_B and 1_C) if there exist $\alpha \in A^*$ such that $T_A(\alpha)$ is full rank. T is called 1_* -generic if it is 1_A , 1_B or 1_C -generic.

 $B\otimes C$ is identified with linear maps from B^* to C , $\operatorname{Hom}(B^*,C).$

Definition

T is called 1_A -generic(similarly 1_B and 1_C) if there exist $\alpha \in A^*$ such that $T_A(\alpha)$ is full rank. T is called 1_* -generic if it is 1_A , 1_B or 1_C -generic.

If T is 1_* -generic then we reduce to the a classical problem of classifying the closure of simultaneously diagonalizable matrices.

 $B\otimes C$ is identified with linear maps from B^* to C , $\operatorname{Hom}(B^*,C).$

Definition

T is called 1_A -generic(similarly 1_B and 1_C) if there exist $\alpha \in A^*$ such that $T_A(\alpha)$ is full rank. T is called 1_* -generic if it is 1_A , 1_B or 1_C -generic.

If T is 1_* -generic then we reduce to the a classical problem of classifying the closure of simultaneously diagonalizable matrices.

Question 3

Find equations for the set of concise, 1_* -generic, minimal border rank tensors.

・ロット (雪) () () () ()

 $B\otimes C$ is identified with linear maps from B^* to C , $\operatorname{Hom}(B^*,C).$

Definition

T is called 1_A -generic(similarly 1_B and 1_C) if there exist $\alpha \in A^*$ such that $T_A(\alpha)$ is full rank. T is called 1_* -generic if it is 1_A , 1_B or 1_C -generic.

If T is 1_* -generic then we reduce to the a classical problem of classifying the closure of simultaneously diagonalizable matrices.

Question 3

Find equations for the set of concise, 1_* -generic, minimal border rank tensors.

Question 3 is answered for m = 5.[Landsberg, Michalek]

・ロト ・ 日 ト ・ ヨ ト ・ 日 ト

Simultaneously Diagonalizable Matrices

Let M_1, \cdots, M_m be m simultaneously diagonalizable $m \times m$ matrices.

Classical Problem

Characterize the closure of the space of a m-tuple of simultaneously diagonalizable matrices.

(日本) (日本) (日本)

Simultaneously Diagonalizable Matrices

Let M_1, \cdots, M_m be m simultaneously diagonalizable $m \times m$ matrices.

Classical Problem

Characterize the closure of the space of a $m\mbox{-tuple}$ of simultaneously diagonalizable matrices.

Known Results

• End Closed Condition: Known since 1960.[Gerstenhaber]

イロト イポト イヨト イヨト

Simultaneously Diagonalizable Matrices

Let M_1, \cdots, M_m be m simultaneously diagonalizable $m \times m$ matrices.

Classical Problem

Characterize the closure of the space of a $m\mbox{-tuple}$ of simultaneously diagonalizable matrices.

Known Results

• End Closed Condition: Known since 1960.[Gerstenhaber]

Let T be 1_A -generic and concise, then it's of minimal border rank \iff $T_A(A^*)T_A(\alpha)^{-1} \subset \operatorname{End}(C)$ is in the closure of the space of simultaneously diagonalizable matrices.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Motivation

• Question 1 is finding equations for the secant variety, $\sigma_m(Seg(\mathbb{CP}^{m-1}\times\mathbb{CP}^{m-1}\times\mathbb{CP}^{m-1})).$

・ 同 ト ・ ヨ ト ・ ヨ ト

• Question 1 is finding equations for the secant variety, $\sigma_m(Seg(\mathbb{CP}^{m-1} \times \mathbb{CP}^{m-1} \times \mathbb{CP}^{m-1})).$

• Complexity Theory: Latest bound on the exponent of matrix multiplication is achieved through Coppersmith-Winograd tensor. Which is a concise minimal border rank tensor.

不得下 不足下 不足下 一足

• Question 1 is finding equations for the secant variety, $\sigma_m(Seg(\mathbb{CP}^{m-1} \times \mathbb{CP}^{m-1} \times \mathbb{CP}^{m-1})).$

• Complexity Theory: Latest bound on the exponent of matrix multiplication is achieved through Coppersmith-Winograd tensor. Which is a concise minimal border rank tensor.

• Classical Linear Algebra: Closure of simultaneously diagonalizable matrices.

(1) 日本 (日本) (日本) (日本)

• Question 1 is finding equations for the secant variety, $\sigma_m(Seg(\mathbb{CP}^{m-1} \times \mathbb{CP}^{m-1} \times \mathbb{CP}^{m-1})).$

• Complexity Theory: Latest bound on the exponent of matrix multiplication is achieved through Coppersmith-Winograd tensor. Which is a concise minimal border rank tensor.

- Classical Linear Algebra: Closure of simultaneously diagonalizable matrices.
- Algebraic Geometry: Hilbert schemes and Quot Schemes.

▲御▶ ▲臣▶ ▲臣▶ 二臣

Salmon Prize Problem

In 2007, E. Allman offered a prize of smoked Alaskan copper river salmon to anyone who could find the defining ideal of the following secant variety:

 $\sigma_4(Seg(\mathbb{P}^3 \times \mathbb{P}^3 \times \mathbb{P}^3))$

Strassen's Equations

Simultaneously diagonalizable \implies Commuting.

Theorem ([Strassen])

Let X_1, X_2 and Y be in $T_A(A^*)$. If T is of minimal border rank then $\operatorname{adj}(Y)X_1\operatorname{adj}(Y)X_2 - \operatorname{adj}(Y)X_2\operatorname{adj}(Y)X_1 = 0$.

(4 回) (4 回) (4 回)

Strassen's Equations

Simultaneously diagonalizable \implies Commuting.

Theorem ([Strassen])

Let X_1, X_2 and Y be in $T_A(A^*)$. If T is of minimal border rank then $\operatorname{adj}(Y)X_1\operatorname{adj}(Y)X_2 - \operatorname{adj}(Y)X_2\operatorname{adj}(Y)X_1 = 0$.

Assuming T 1_{*}-generic, we can take Y to be of full rank and in particular identity matrix. Then Strassen's Equations precisely reduces to commuting criterion of X_1 and X_2 .

イロト イポト イヨト イヨト

Strassen's Equations

Simultaneously diagonalizable \implies Commuting.

Theorem ([Strassen])

Let X_1, X_2 and Y be in $T_A(A^*)$. If T is of minimal border rank then $\operatorname{adj}(Y)X_1\operatorname{adj}(Y)X_2 - \operatorname{adj}(Y)X_2\operatorname{adj}(Y)X_1 = 0$.

Assuming T 1_{*}-generic, we can take Y to be of full rank and in particular identity matrix. Then Strassen's Equations precisely reduces to commuting criterion of X_1 and X_2 .

These are necessary conditions a tensor must satisfy in order to be of minimal border rank.

・ロト ・ 部 ト ・ ヨ ト ・ ヨ

In this case T is 1_A -generic and concise.

- E F

In this case T is 1_A -generic and concise.

• Already solved, Question 3 for m = 5.[Landsberg, Michalek]

In this case T is 1_A -generic and concise.

- Already solved, Question 3 for m = 5.[Landsberg, Michalek]
- Known answer: Strassen's equations together with end closed condition.

通 ト イヨ ト イヨト

In this case T is 1_A -generic and concise.

- Already solved, Question 3 for m = 5.[Landsberg, Michalek]
- Known answer: Strassen's equations together with end closed condition.

Theorem (J. Jelisiejew, K. Sivic)

The closure of the space of 4-tuple of 5×5 commuting matrices is not irreducible and has exactly two components. The principal component is the closure of simultaneously diagonalizable matrices and one other component.

In this case T is 1_A -generic and concise.

- Already solved, Question 3 for m = 5.[Landsberg, Michalek]
- Known answer: Strassen's equations together with end closed condition.

Theorem (J. Jelisiejew, K. Sivic)

The closure of the space of 4-tuple of 5×5 commuting matrices is not irreducible and has exactly two components. The principal component is the closure of simultaneously diagonalizable matrices and one other component.

Upshot: This extends to m = 6 and the same remains true!

(4 間) トイヨト イヨト

Theorem (Jelisiejew, Landsberg, P)

Let $T \in \mathbb{C}^m \otimes \mathbb{C}^m \otimes \mathbb{C}^m$, where m = 5, 6, be a concise 1_* -generic tensor. Then T is of minimal border rank if and only if T satisfies Strassen's equations and End Closed condition.

Outline?

Theorem (Jelisiejew, Landsberg, P)

Let $T \in \mathbb{C}^m \otimes \mathbb{C}^m \otimes \mathbb{C}^m$, where m = 5, 6, be a concise 1_* -generic tensor. Then T is of minimal border rank if and only if T satisfies Strassen's equations and End Closed condition.

Outline?

• Does not extend to m = 7. Explicit example in Abelian Tensors[Landsberg, Michalek].

Theorem (Jelisiejew, Landsberg, P)

Let $T \in \mathbb{C}^m \otimes \mathbb{C}^m \otimes \mathbb{C}^m$, where m = 5, 6, be a concise 1_* -generic tensor. Then T is of minimal border rank if and only if T satisfies Strassen's equations and End Closed condition.

Outline?

- Does not extend to m = 7. Explicit example in *Abelian Tensors*[Landsberg, Michalek].
- Does not make sense for 1-degenerate tensors.

A new paper, *Apolarity, border rank and multigraded Hilbert scheme* by Weronika Buczynska and Jaroslaw Buczynski[Buczynska, Buczynski], gives new necessary conditions for minimal border rank.

The tensor T is said to pass 111-test if $\dim((T_A(A^*) \otimes A) \cap (T_B(B^*) \otimes B) \cap (T_C(C^*) \otimes C)) \ge m.$

Definition

If T satisfies the above inequality then T is called 111-abundant and if it satisfies without excess, i.e. the above inequality becomes equality then we say T is 111-sharp.

The tensor T is said to pass 111-test if $\dim((T_A(A^*) \otimes A) \cap (T_B(B^*) \otimes B) \cap (T_C(C^*) \otimes C)) \ge m.$

Definition

If T satisfies the above inequality then T is called 111-abundant and if it satisfies without excess, i.e. the above inequality becomes equality then we say T is 111-sharp.

Theorem (Jelisiejew, Landsberg, P)

Let $T \in \mathbb{C}^m \otimes \mathbb{C}^m \otimes \mathbb{C}^m$, where m = 5, 6, be a concise 1_* -generic tensor. Then T is of minimal border rank if and only if T is 111-abundant.

イロト 不得 ト イヨト イヨト

Wish: 111-test remains sufficient for 1-degenerate tensors.

(4) (2) (4) (2) (4)

Wish: 111-test remains sufficient for 1-degenerate tensors.

Theorem (Jelisiejew, Landsberg, P)

When $m \leq 5$, the set of concise minimal border rank tensors in $\mathbb{C}^m \otimes \mathbb{C}^m \otimes \mathbb{C}^m$ is the zero set of the 111-equations.

(日本) (日本) (日本)

Things getting wild...

Up to the action of $\mathsf{GL}_5(\mathbb{C})^{\times 3}\rtimes \mathcal{S}_3$ there are exactly 5 concise 1-degenerate minimal border rank tensors in $\mathbb{C}^5\otimes\mathbb{C}^5\otimes\mathbb{C}^5$ and those are:

Things getting wild...

Up to the action of $GL_5(\mathbb{C})^{\times 3} \rtimes S_3$ there are exactly 5 concise 1-degenerate minimal border rank tensors in $\mathbb{C}^5 \otimes \mathbb{C}^5 \otimes \mathbb{C}^5$ and those are:

$$T_{\mathcal{O}_{58}} = \begin{pmatrix} x_1 & x_2 & x_3 & x_5 \\ x_5 & x_1 & x_4 & -x_2 \\ & x_1 & & \\ & -x_5 & x_1 \\ & & x_5 \end{pmatrix}, T_{\mathcal{O}_{57}} = \begin{pmatrix} x_1 & x_2 & x_3 & x_5 \\ x_1 & x_4 & -x_2 \\ & x_1 & & \\ & & x_1 \\ & & & x_5 \end{pmatrix},$$
$$T_{\mathcal{O}_{56}} = \begin{pmatrix} x_1 & x_2 & x_3 & x_5 \\ x_1 + x_5 & x_4 \\ & & x_1 \\ & & & x_5 \end{pmatrix}, T_{\mathcal{O}_{55}} = \begin{pmatrix} x_1 & x_2 & x_3 & x_5 \\ x_1 & x_5 & x_4 \\ & x_1 & & \\ & & x_1 \\ & & & x_5 \end{pmatrix},$$
$$T_{\mathcal{O}_{54}} = \begin{pmatrix} x_1 & x_2 & x_3 & x_5 \\ x_1 & x_2 & x_3 & x_5 \\ x_1 & x_4 \\ & & x_1 \\ & & & x_5 \end{pmatrix}.$$

The smoothable rank of a tensor $T \in A \otimes B \otimes C$, denoted $\mathbf{S}(T)$, is the minimal degree of a zero dimensional scheme $\operatorname{Spec}(R) \subseteq \mathbb{P}A \times \mathbb{P}B \times \mathbb{P}C$ such that $T \in \langle \operatorname{Spec}(R) \rangle$.

• I > • < </p>

The smoothable rank of a tensor $T \in A \otimes B \otimes C$, denoted $\mathbf{S}(T)$, is the minimal degree of a zero dimensional scheme $\operatorname{Spec}(R) \subseteq \mathbb{P}A \times \mathbb{P}B \times \mathbb{P}C$ such that $T \in (\operatorname{Spec}(R))$.

In general $\mathbf{R}(T) \ge \mathbf{S}(T) \ge \mathbf{R}(T)$. If $\mathbf{S}(T) > \mathbf{R}(T)$ then T is called a *wild* tensor.

・ 同 ト ・ ヨ ト ・ ヨ ト

The smoothable rank of a tensor $T \in A \otimes B \otimes C$, denoted $\mathbf{S}(T)$, is the minimal degree of a zero dimensional scheme $\operatorname{Spec}(R) \subseteq \mathbb{P}A \times \mathbb{P}B \times \mathbb{P}C$ such that $T \in (\operatorname{Spec}(R))$.

In general $\mathbf{R}(T) \ge \mathbf{S}(T) \ge \mathbf{R}(T)$. If $\mathbf{S}(T) > \mathbf{R}(T)$ then T is called a *wild* tensor.

Theorem

In $\mathbb{C}^5 \otimes \mathbb{C}^5 \otimes \mathbb{C}^5$ concise, minimal border rank, wild tensors are precisely $T_{\mathcal{O}_{58}}, T_{\mathcal{O}_{57}}, T_{\mathcal{O}_{56}}, T_{\mathcal{O}_{54}}$.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ◆□ ● ○○○

Thank you!!!

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

E 990

References

Murray Gerstenhaber

On Dominance and Varieties of Commuting Matrices Annals of Mathematics, Mar. 1961, Second Series, Vol. 73 No. 2, pp 324-348.

JM Landsberg, Mateusz Michalek

Abelian Tensors

Journal of Pure and Applied Mathematics, Vol. 108, Issue 3, September 2017, pp 333-371.

V. Strassen

Rank and Optimal Computation of Generic Tensors Linear Algebra and its Applications, 52/53(1983), 645-685.

Weronika Buczynska, Jaroslaw Buczynski Apolarity, border rank and multigraded Hilbert scheme

Shmuel Friedland,

On tensors of border rank l in $\mathbb{C}^{m \times n \times l}$ Linear Algebra and its Applications, Volume 438, issue 2, pp 713-737

Peter Burgisser, Michael Clausen, and M. Amin Shokrollahi Algebraic complexity theory

A (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (

 $\exists \rightarrow$

For $T \in A \otimes B \otimes C$ a concise tensor

Definition

 $Ann(T) = \{x \in Sym(A^*) \otimes Sym(B^*) \otimes Sym(C^*) | x.T = 0\}$

- $\label{eq:analytical_states} I \subset Ann(T) \text{ i.e. } I_{110} \subset T(C^*)^{\perp} \text{, etc. and } I_{111} \subset T^{\perp}$
- **②** For all i, j, k such that i + j + k > 1, then codim $I_{ijk} = m$
- **③** The image of the multiplication map $I_{i-1,j,k} \otimes A^* \oplus I_{i,j-1,k} \otimes B^* \oplus I_{i,j,k-1} \otimes C^* → S^i A^* \otimes S^j B^* \otimes S^k C^*$ is contained in I_{ijk}

We refer to the codimension criterion at (i, j, k) grade as ijk-test.

back

|▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ の Q @

Let $T \in A \otimes B \otimes C$ concise, 1_A -generic, and $\alpha_1, \dots, \alpha_m$ a basis of A^* with $T_A(\alpha_1)$ full rank. Consider $\langle Id_{B^*}, M_2, \dots, M_m \rangle \subset \text{Hom}(B^*, B^*)$, where $M_i = T_A(\alpha_1)^{-1}T_A(\alpha_i)$.

• T is rank $m \iff M_i$'s simultaneously diagonalizable.

 T is border rank m ↔ M_i's are in the closure of the space of simultaneously diagonalizable matrices.

back

不得下 不足下 不足下 一足

Apolarity Lemma

Let $S = \mathbb{C}[x_1, \ldots, x_n]$ and $T = \mathbb{C}[y_1, \ldots, y_n]$. Define T action on S as $y_i \cdot x_j = \frac{\partial}{\partial x_i} x_j$. Let $f \in S_d$ and $f^{\perp} := \{t \in T | t \cdot f = 0\}$ be called the apolar ideal of f.

Apolarity Lemma

 $f \in \langle l_1^d, \dots, l_r^d \rangle \iff f^\perp$ contains an ideal of r distinct points.

back

|▲□ ▶ ▲ □ ▶ ▲ □ ▶ | □ | の Q @

End Closed Condition

End Closed Condition

Let $T \in A \otimes B \otimes C$ be a concise 1_A -generic tensor and $\alpha \in A^*$ such that $T_A(\alpha)$ has full rank. Then $T(\alpha)^{-1}T_A(A^*)$ is a subalgebra of $\operatorname{Hom}(B^*, B^*)$.

back

Flag Condition

Let $T \in A \otimes B \otimes C$ be a concise tensor. Then if $\underline{R}(T) = m$ there exist $A_1 \subset A_2 \subset \cdots A_m = A^*$ such that $\dim(A_i) = i$ and $T_A(A_i) \subset \sigma_i(\mathbb{P}B \times \mathbb{P}C)$.

back

Theorem ([Friedland], Thm 3.1)

Let $T \in A \otimes B \otimes C$ be 1_C -degenerate and rank of elements of $T_C(C^*)$ are bounded by m-1 but not by m-2. Then there exist bases of A, B, C such that, letting X_1, \dots, X_m be a basis of $T_C(C^*)$ as a space of matrices,

 $X_1 = \begin{pmatrix} Id_{m-1} & 0 \\ 0 & 0 \end{pmatrix}$ $\mathbf{2} \ X_m = \begin{pmatrix} \mathbf{x}_m & e_1 \\ e^{m-1} & 0 \end{pmatrix}$ So For all $2 \le s \le m-1$, $X_s = \begin{pmatrix} \mathbf{x}_s & 0 \\ 0 & 0 \end{pmatrix}$. Here $e_1 = (1, 0, \dots, 0)^t \in \mathbb{C}^{m-1}$, $e^{m-1} = (0, 0, \dots, 1) \in \mathbb{C}^{m-1*}$. $\mathbf{x}_i \in Mat_{(m-1)\times(m-1)}$ Moreover, let $U_R = \langle \mathbf{x}_m^j e_1 | j \in \mathbb{Z}_{\geq 0} \rangle \subset \mathbb{C}^{m-1}$ and $U_L = \langle e^{m-1} \mathbf{x}_m^j | i \in \mathbb{Z}_{\geq 0} \rangle \subset \mathbb{C}^{m-1*}$. Then $e^{m-1} U_R = 0, U_L e_1 = 0$ and $\mathbf{x}_{s}U_{B} = 0 = U_{L}\mathbf{x}_{s}$ for $2 \le s \le m - 1$.

back

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ◆□ ● ○○○

Consider: $T = (e_1 \otimes e_1 \otimes e_2) + (e_1 \otimes e_2 \otimes e_1) + e_2 \otimes e_1 \otimes e_1) \in \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$.

Rank 3 as $\begin{pmatrix} a & b \\ b & 0 \end{pmatrix}$, $a, b \in \mathbb{C}$ can not be written as sum of two rank one matrices.

Border rank 2 as $T(\epsilon) = \frac{1}{\epsilon} [(e_1 + \epsilon e_2) \otimes (e_1 + \epsilon e_2) \otimes (e_1 + \epsilon e_2) - e_1 \otimes e_1 \otimes e_1]$ and $T(\epsilon) \to T$ as $\epsilon \to 0$.

back

(四) (王) (王) (王)

Let $T \in A \otimes B \otimes C$ and $T = \sum_{i=1}^{r} a_i \otimes b_i \otimes c_i$ be a rank decomposition.

Definition

T is concise if $\{a_1, \dots, a_r\}$ spans A, $\{b_1, \dots, b_r\}$ spans B, and $\{c_1, \dots, c_r\}$ spans C.

back

伺下 イヨト イヨト

Working over \mathbb{C} .

The join of two varieties $Y, Z \subset \mathbb{P}V$ is $J(Y, Z) = \overline{\bigcup_{x \in Y, y \in Z, x \neq y} \mathbb{P}^1_{xy}}$. The *r*-th secant variety of a variety $X \subset \mathbb{P}V$ is

$$\sigma_r(X) = \overline{\bigcup_{P_1, \cdots, P_r \in X} \langle P_1, \cdots, P_r \rangle} = J(Y, J(Y, \cdots))$$

Fact: Joins and Secants of irreducible varieties are irreducible. **Fact:** $X = Seg(\mathbb{P}V_1 \times \cdots \times \mathbb{P}V_n)$, then Euclidean and Zariski closure of X agree for $\sigma_r(X)$. **Sketch:**

- Euclidean closure is contained in Zariski closure.
- Z an irreducible variety and $U \subset Z$ a Zariski open subset then $\overline{U} = Z$ in terms of Zariski closure and Euclidean closure.
- For X take U to be set of rank at most r tensors.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Expected Dimension:

• For $\sigma_r(X)$ is $\min\{rn + r - 1, N\}$, where $X \subset \mathbb{P}^N$ and $\dim(X) = n$. Defect $\delta_r := rn + r - 1 - \dim \sigma_r(X)$.

Theorem (Terracini's Lemma)

Let $P_1, \cdots, P_r \in X$ be general points and $P \in \langle P_1, \cdots, P_r \rangle \subset \sigma_r(X)$ a general point. Then

$$T_P(\sigma_r(X)) = \langle T_{P_1}(X), \cdots, T_{P_r}(X) \rangle$$

Consequence: $\delta_r(Seg(\mathbb{P}A \times \mathbb{P}B)) = r^2 - r$ **Consequence:** m > 2 and $r \le \min\{\dim V_i\}$ then $\sigma_r(Seg(\mathbb{P}V_1 \times \cdots \times \mathbb{P}V_m))$ is not defective.

back

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Fact: For a finite algebra $\mathcal{A} = \prod \mathcal{A}_t$, with \mathcal{A}_t local. Algebra \mathcal{A} can be generated by q elements if and only if $H_{\mathcal{A}_t}(1) \leq t$ for all t.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Fact: For a finite algebra $\mathcal{A} = \prod \mathcal{A}_t$, with \mathcal{A}_t local. Algebra \mathcal{A} can be generated by q elements if and only if $H_{\mathcal{A}_t}(1) \leq t$ for all t.

For m=5: Let T be 1_A -generic with $T_A(\alpha_0)$ full rank and $E = T_A(A^*)T_A(\alpha_0)^{-1} \subset \operatorname{End}(C)$ space of commuting matrices. Gives C an $S := \mathbb{C}[y_1, \cdots, y_4]$ -module structure. $S/Ann(C) \cong E = \langle x_1, \cdots, x_5 \rangle$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

Fact: For a finite algebra $\mathcal{A} = \prod \mathcal{A}_t$, with \mathcal{A}_t local. Algebra \mathcal{A} can be generated by q elements if and only if $H_{\mathcal{A}_t}(1) \leq t$ for all t.

For m=5: Let T be 1_A -generic with $T_A(\alpha_0)$ full rank and $E = T_A(A^*)T_A(\alpha_0)^{-1} \subset \operatorname{End}(C)$ space of commuting matrices. Gives C an $S := \mathbb{C}[y_1, \cdots, y_4]$ -module structure. $S/Ann(C) \cong E = \langle x_1, \cdots, x_5 \rangle$

<u>Case-I:</u> E contains an element with more than one eigenvalue. That implies(by Lemma 3.12 of Components and Singularities paper) $S/Ann(C) \cong \prod_t S/K_t$, non-trivial product of local algebras and $\dim(E) = 5 \implies \dim(S/K_t) \le 4 \implies H_{S/K_t}(1) \le 3$. Thus E can be generated by at most 3 matrices.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Fact: For a finite algebra $\mathcal{A} = \prod \mathcal{A}_t$, with \mathcal{A}_t local. Algebra \mathcal{A} can be generated by q elements if and only if $H_{\mathcal{A}_t}(1) \leq t$ for all t.

For m=5: Let T be 1_A -generic with $T_A(\alpha_0)$ full rank and $E = T_A(A^*)T_A(\alpha_0)^{-1} \subset \operatorname{End}(C)$ space of commuting matrices. Gives C an $S := \mathbb{C}[y_1, \cdots, y_4]$ -module structure. $S/Ann(C) \cong E = \langle x_1, \cdots, x_5 \rangle$

<u>Case-I:</u> E contains an element with more than one eigenvalue. That implies(by Lemma 3.12 of Components and Singularities paper) $S/Ann(C) \cong \prod_t S/K_t$, non-trivial product of local algebras and $\dim(E) = 5 \implies \dim(S/K_t) \le 4 \implies H_{S/K_t}(1) \le 3$. Thus E can be generated by at most 3 matrices.

<u>Case-II:</u> All elements of E are nilpotent.

Then $H_E(0) = 1$, $H_E(1) \ge 4 \implies H_E(2) = 0$. Then by Thm 6.14 of Components and Singularities of Commuting Matrices-J,S paper this tuple is in the closure of the tuple of simultaneously diagonalizable matrices.

back

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Theorem ([Friedland], Thm 3.1)

Let $T \in A \otimes B \otimes C$ be 1_A -degenerate and rank of elements of $T_A(A^*)$ are bounded by m-1 but not by m-2. Then there exist bases of A, B, C such that, letting X_1, \dots, X_m be a basis of $T_A(A^*)$ as a space of matrices,

•
$$X_1 = \begin{pmatrix} ld_{m-1} & 0 \\ 0 & 0 \end{pmatrix}$$

• $X_m = \begin{pmatrix} \mathbf{x}_m & \omega \\ \alpha & 0 \end{pmatrix}$
• For all $2 \le s \le m-1$, $X_s = \begin{pmatrix} \mathbf{x}_s & 0 \\ 0 & 0 \end{pmatrix}$.
Here $\omega \in \mathbb{C}^{m-1}$, $\alpha \in \mathbb{C}^{(m-1)*}$, $\mathbf{x}_m, \mathbf{x}_s \in Mat_{(m-1)\times(m-1)}$.
Moreover, $\alpha \mathbf{x}_m^j \omega = 0$ for all j , and letting $U_R = \langle \mathbf{x}_m^j \omega | j \in \mathbb{Z}_{\ge 0} \rangle \subset \mathbb{C}^{m-1}$ and
 $U_L = \langle \alpha \mathbf{x}_m^j | j \in \mathbb{Z}_{\ge 0} \rangle \subset \mathbb{C}^{(m-1)*}$. Then $\mathbf{x}_s U_R = 0 = U_L \mathbf{x}_s$ for $2 \le s \le m-1$.

|▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 日 ● ● ● ●