Concise Tensors of Minimal Border Rank

Arpan Pal

Texas A&M University, College Station, TX

Oct 7, 2022

Pal [Texas A&M University](#page-61-0)

 $\left\{ \bigoplus_{i=1}^{n} x_i \in \mathbb{R} \right\}$, $\left\{ \bigoplus_{i=1}^{n} x_i \in \mathbb{R} \right\}$

 $2Q$

э

Let $T \in A \otimes B \otimes C$.

T can be seen as a linear map $T_A : A^* \to B \otimes C$. Similarly T_B and T_C .

4 **EL F**

 QQ

ミー

メタトメ ミトメ ヨト

Let $T \in A \otimes B \otimes C$.

T can be seen as a linear map $T_A: A^* \to B \otimes C$. Similarly T_B and T_C .

Definition

The *rank* of a tensor T, denoted $R(T)$, is the smallest r such that $T = \sum_{i=1}^r a_i \otimes b_i \otimes c_i.$

イタン イミン イミン

ミー $2Q$

Let $T \in A \otimes B \otimes C$.

T can be seen as a linear map $T_A: A^* \to B \otimes C$. Similarly T_B and T_C .

Definition

The rank of a tensor T, denoted $R(T)$, is the smallest r such that $T = \sum_{i=1}^r a_i \otimes b_i \otimes c_i.$

Definition

The border rank of a tensor T, denoted $\mathbf{R}(T)$, is the smallest r such that $T = \lim_{\epsilon \to 0} T_{\epsilon}$ where $\mathbf{R}(T_{\epsilon}) = r$.

[Example?](#page-53-0)

イロン イ部ン イヨン イヨン 一店 …

Let $T \in A \otimes B \otimes C$.

T can be seen as a linear map $T_A: A^* \to B \otimes C$. Similarly T_B and T_C .

Definition

The rank of a tensor T, denoted $R(T)$, is the smallest r such that $T = \sum_{i=1}^r a_i \otimes b_i \otimes c_i.$

Definition

The border rank of a tensor T, denoted $\mathbf{R}(T)$, is the smallest r such that $T = \lim_{\epsilon \to 0} T_{\epsilon}$ where $\mathbf{R}(T_{\epsilon}) = r$.

[Example?](#page-53-0)

Definition

The tensor T is called concise if T_A , T_B and T_C are injective.

← 1回 → 1

Assume $\dim(A) = \dim(B) = \dim(C) = m$ and $T \in A \otimes B \otimes C$.

 \leftarrow \Box

イタン イミン イミン

重

 $\mathcal{O}\subseteq\mathcal{O}$

Assume $\dim(A) = \dim(B) = \dim(C) = m$ and $T \in A \otimes B \otimes C$.

Question 1

Find equations for the set of tensors of border rank at most m .

メタトメミトメミト

目

Assume $\dim(A) = \dim(B) = \dim(C) = m$ and $T \in A \otimes B \otimes C$.

Question 1

Find equations for the set of tensors of border rank at most m .

Question 1 is answered up to dimension $m=4$. [\[Friedland\]](#page-46-0)

イタン イミン イミン

目

Assume $\dim(A) = \dim(B) = \dim(C) = m$ and $T \in A \otimes B \otimes C$.

Question 1

Find equations for the set of tensors of border rank at most m .

Question 1 is answered up to dimension $m=4$. [\[Friedland\]](#page-46-0)

Assuming T is concise, minimal possible border rank for T is m .

イタン イミン イミン

E.

Assume $\dim(A) = \dim(B) = \dim(C) = m$ and $T \in A \otimes B \otimes C$.

Question 1

Find equations for the set of tensors of border rank at most m .

Question 1 is answered up to dimension $m=4$. [\[Friedland\]](#page-46-0)

Assuming T is concise, minimal possible border rank for T is m .

Question 2

Find equations for the set of concise minimal border rank tensors.

イロメ イ部メ イヨメ イヨメー

重工 $2Q$

Assume $\dim(A) = \dim(B) = \dim(C) = m$ and $T \in A \otimes B \otimes C$.

Question 1

Find equations for the set of tensors of border rank at most m .

Question 1 is answered up to dimension $m=4$. [\[Friedland\]](#page-46-0)

Assuming T is concise, minimal possible border rank for T is m .

Question 2

Find equations for the set of concise minimal border rank tensors.

Under a natural genericity condition this question is same as characterizing the closure of simultaneously diagonalizable matrices.

(ロ) 제*면* > 제품 > 제품 > (품)

 QQQ

 $B\otimes C$ is identified with linear maps from B^* to C , $\mathsf{Hom}(B^*,C).$

イロト イ部 トイミト イミトー

 $2Q$

目

Definition

 T is called 1_A -generic(similarly 1_B and $1_C)$ if there exist $\alpha \in A^*$ such that $T_A(\alpha)$ is full rank. T is called 1_{*} -generic if it is 1_{A} , 1_{B} or 1_{C} -generic.

(何) (ヨ) (ヨ)

Definition

 T is called 1_A -generic(similarly 1_B and $1_C)$ if there exist $\alpha \in A^*$ such that $T_A(\alpha)$ is full rank. T is called 1_{*} -generic if it is 1_{A} , 1_{B} or 1_{C} -generic.

If T is 1_∗-generic then we [reduce to](#page-48-0) the a classical problem of classifying the closure of simultaneously diagonalizable matrices.

(何) (ミ) (ミ)

Definition

 T is called 1_A -generic(similarly 1_B and $1_C)$ if there exist $\alpha \in A^*$ such that $T_A(\alpha)$ is full rank. T is called 1_{*} -generic if it is 1_{A} , 1_{B} or 1_{C} -generic.

If T is 1_∗-generic then we [reduce to](#page-48-0) the a classical problem of classifying the closure of simultaneously diagonalizable matrices.

Question 3

Find equations for the set of concise, 1_{*} -generic, minimal border rank tensors.

(ロ) (個) (目) (毛)

Definition

 T is called 1_A -generic(similarly 1_B and $1_C)$ if there exist $\alpha \in A^*$ such that $T_A(\alpha)$ is full rank. T is called 1_{*} -generic if it is 1_{A} , 1_{B} or 1_{C} -generic.

If T is 1_∗-generic then we [reduce to](#page-48-0) the a classical problem of classifying the closure of simultaneously diagonalizable matrices.

Question 3

Find equations for the set of concise, 1_{*} -generic, minimal border rank tensors.

Question 3 is answered for $m = 5$. [\[Landsberg, Michalek\]](#page-46-1)

イロメ イ部メ イヨメ イヨメー

 QQQ

Simultaneously Diagonalizable Matrices

Let M_1, \dots, M_m be m simultaneously diagonalizable $m \times m$ matrices.

Classical Problem

Characterize the closure of the space of a m -tuple of simultaneously diagonalizable matrices.

(御) スミンスミン

Simultaneously Diagonalizable Matrices

Let M_1, \dots, M_m be m simultaneously diagonalizable $m \times m$ matrices.

Classical Problem

Characterize the closure of the space of a m -tuple of simultaneously diagonalizable matrices.

Known Results

• End Closed Condition: Known since 1960. [\[Gerstenhaber\]](#page-46-2)

メタトメミトメミト

÷.

Simultaneously Diagonalizable Matrices

Let M_1, \dots, M_m be m simultaneously diagonalizable $m \times m$ matrices.

Classical Problem

Characterize the closure of the space of a m -tuple of simultaneously diagonalizable matrices.

Known Results

• End Closed Condition: Known since 1960. [\[Gerstenhaber\]](#page-46-2)

Let T be 1_A-generic and concise, then it's of minimal border rank \iff $T_A(A^*)T_A(\alpha)^{-1} \subset \mathsf{End}(C)$ is in the closure of the space of simultaneously diagonalizable matrices.

イロト イ母 トイヨト イヨト 一番

Motivation

Question 1 is finding equations for the [secant variety,](#page-55-0) $\sigma_m(Seg(\mathbb{CP}^{m-1}\times \mathbb{CP}^{m-1}\times \mathbb{CP}^{m-1})).$

4 **EL F**

メ御 ドメ ミド メ ミトー

ミー $2Q$

- Question 1 is finding equations for the [secant variety,](#page-55-0) $\sigma_m(Seg(\mathbb{CP}^{m-1}\times \mathbb{CP}^{m-1}\times \mathbb{CP}^{m-1})).$
- Complexity Theory: Latest bound on the exponent of matrix multiplication is achieved through Coppersmith-Winograd tensor. Which is a concise minimal border rank tensor.

K 御 ⊁ K 唐 ⊁ K 唐 ⊁ …

ミー $2Q$

- Question 1 is finding equations for the [secant variety,](#page-55-0) $\sigma_m(Seg(\mathbb{CP}^{m-1}\times \mathbb{CP}^{m-1}\times \mathbb{CP}^{m-1})).$
- Complexity Theory: Latest bound on the exponent of matrix multiplication is achieved through Coppersmith-Winograd tensor. Which is a concise minimal border rank tensor.
- Classical Linear Algebra: Closure of simultaneously diagonalizable matrices.

K 御 ▶ K 君 ▶ K 君 ▶ ○ 君 ○

 PQQ

Question 1 is finding equations for the [secant variety,](#page-55-0) $\sigma_m(Seg(\mathbb{CP}^{m-1}\times \mathbb{CP}^{m-1}\times \mathbb{CP}^{m-1})).$

Complexity Theory: Latest bound on the exponent of matrix multiplication is achieved through Coppersmith-Winograd tensor. Which is a concise minimal border rank tensor.

Classical Linear Algebra: Closure of simultaneously diagonalizable matrices.

Algebraic Geometry: Hilbert schemes and Quot Schemes.

メタメメ ミメメ ミメー ミー

 OQ

Salmon Prize Problem

In 2007, E. Allman offered a prize of smoked Alaskan copper river salmon to anyone who could find the defining ideal of the following secant variety:

 $\sigma_4(Seg(\mathbb{P}^3\times\mathbb{P}^3\times\mathbb{P}^3))$

 OQ

同下 モミトマ

Strassen's Equations

Simultaneously diagonalizable \implies Commuting.

Theorem ([\[Strassen\]](#page-46-3))

Let X_1, X_2 and Y be in $T_A(A^*)$. If T is of minimal border rank then $adj(Y)X_1$ adj $(Y)X_2$ – adj $(Y)X_2$ adj $(Y)X_1 = 0$.

メ御 ドメ ミド メ ミトー

 $2Q$

œ.

Strassen's Equations

Simultaneously diagonalizable \implies Commuting.

Theorem ([\[Strassen\]](#page-46-3))

Let X_1, X_2 and Y be in $T_A(A^*)$. If T is of minimal border rank then $adj(Y)X_1$ adj $(Y)X_2 - adj(Y)X_2$ adj $(Y)X_1 = 0$.

Assuming T 1_{*} -generic, we can take Y to be of full rank and in particular identity matrix. Then Strassen's Equations precisely reduces to commuting criterion of X_1 and X_2 .

イタン イミン イミン

E.

Strassen's Equations

Simultaneously diagonalizable \implies Commuting.

Theorem ([\[Strassen\]](#page-46-3))

Let X_1, X_2 and Y be in $T_A(A^*)$. If T is of minimal border rank then $adj(Y)X_1$ adj $(Y)X_2 - adj(Y)X_2$ adj $(Y)X_1 = 0$.

Assuming T 1_{*} -generic, we can take Y to be of full rank and in particular identity matrix. Then Strassen's Equations precisely reduces to commuting criterion of X_1 and X_2 .

These are necessary conditions a tensor must satisfy in order to be of minimal border rank.

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ │ 경

 PQQ

In this case T is 1_A -generic and concise.

母 ト イヨ ト イヨ ト

目

In this case T is 1_A -generic and concise.

• Already solved, Question 3 for $m = 5$. [\[Landsberg, Michalek\]](#page-46-1)

 $2Q$

э

母 ト イヨ ト イヨ ト

In this case T is 1_A -generic and concise.

- Already solved, Question 3 for $m = 5$. [\[Landsberg, Michalek\]](#page-46-1)
- Known answer: Strassen's equations together with [end closed condition.](#page-50-0)

押 トイミト イヨト

÷.

In this case T is 1_A -generic and concise.

- Already solved, Question 3 for $m = 5$. [\[Landsberg, Michalek\]](#page-46-1)
- Known answer: Strassen's equations together with [end closed condition.](#page-50-0)

Theorem (J. Jelisiejew, K. Sivic)

The closure of the space of 4-tuple of 5×5 commuting matrices is not irreducible and has exactly two components. The principal component is the closure of simultaneously diagonalizable matrices and one other component.

メタトメミトメミト

 OQ

In this case T is 1_A -generic and concise.

- Already solved, Question 3 for $m = 5$. [\[Landsberg, Michalek\]](#page-46-1)
- Known answer: Strassen's equations together with [end closed condition.](#page-50-0)

Theorem (J. Jelisiejew, K. Sivic)

The closure of the space of 4-tuple of 5×5 commuting matrices is not irreducible and has exactly two components. The principal component is the closure of simultaneously diagonalizable matrices and one other component.

Upshot: This extends to $m = 6$ and the same remains true!

メタトメミトメミト

 QQQ

Theorem (Jelisiejew, Landsberg, P)

Let $T \in \mathbb{C}^m \otimes \mathbb{C}^m \otimes \mathbb{C}^m$, where $m=5,6$, be a concise 1_* -generic tensor. Then T is of minimal border rank if and only if T satisfies Strassen's equations and End Closed condition.

[Outline?](#page-57-0)

同 ト ィ ヨ ト ィ

Theorem (Jelisiejew, Landsberg, P)

Let $T \in \mathbb{C}^m \otimes \mathbb{C}^m \otimes \mathbb{C}^m$, where $m=5,6$, be a concise 1_* -generic tensor. Then T is of minimal border rank if and only if T satisfies Strassen's equations and End Closed condition.

[Outline?](#page-57-0)

• Does not extend to $m = 7$. Explicit example in Abelian Tensors[\[Landsberg, Michalek\]](#page-46-1).

(何) (ミ) (ミ)

Theorem (Jelisiejew, Landsberg, P)

Let $T \in \mathbb{C}^m \otimes \mathbb{C}^m \otimes \mathbb{C}^m$, where $m=5,6$, be a concise 1_* -generic tensor. Then T is of minimal border rank if and only if T satisfies Strassen's equations and End Closed condition.

[Outline?](#page-57-0)

- Does not extend to $m = 7$. Explicit example in Abelian Tensors[\[Landsberg, Michalek\]](#page-46-1).
- Does not make sense for 1-degenerate tensors.

(何) (ミ) (ミ)

A new paper, [Apolarity,](#page-49-0) border rank and multigraded Hilbert scheme by Weronika Buczynska and Jaroslaw Buczynski[\[Buczynska, Buczynski\]](#page-46-4), gives new [necessary](#page-47-0) [conditions](#page-47-0) for minimal border rank.

(何) イミト イミト

÷.

 PQQ

The tensor T is said to pass 111-test if $\dim((T_A(A^*)\otimes A)\cap(T_B(B^*)\otimes B)\cap(T_C(C^*)\otimes C))\geq m.$

Definition

If T satisfies the above inequality then T is called 111-abundant and if it satisfies without excess, i.e. the above inequality becomes equality then we say T is 111-sharp.

母 ト ィヨ ト ィ

 QQQ

The tensor T is said to pass 111-test if $\dim((T_A(A^*)\otimes A)\cap(T_B(B^*)\otimes B)\cap(T_C(C^*)\otimes C))\geq m.$

Definition

If T satisfies the above inequality then T is called 111-abundant and if it satisfies without excess, i.e. the above inequality becomes equality then we say T is 111-sharp.

Theorem (Jelisiejew, Landsberg, P)

Let $T \in \mathbb{C}^m \otimes \mathbb{C}^m \otimes \mathbb{C}^m$, where $m = 5, 6$, be a concise 1_* -generic tensor. Then T is of minimal border rank if and only if T is 111-abundant.

メタトメミトメミト

÷.

 OQ

Wish: 111-test remains sufficient for 1-degenerate tensors.

個 ▶ イヨ ▶ イヨ ▶

Ε

Wish: 111-test remains sufficient for 1-degenerate tensors.

Theorem (Jelisiejew, Landsberg, P)

When $m \leq 5$, the set of concise minimal border rank tensors in $\mathbb{C}^m \otimes \mathbb{C}^m \otimes \mathbb{C}^m$ is the zero set of the 111-equations.

A + + = + + = +

Things getting wild...

Up to the action of $\mathsf{GL}_5(\mathbb{C})^{\times 3}\rtimes \mathcal{S}_3$ there are exactly 5 concise 1-degenerate minimal border rank tensors in $\mathbb{C}^5\otimes\mathbb{C}^5\otimes\mathbb{C}^5$ and those are:

 \overline{m}) \rightarrow \overline{m}) \rightarrow \overline{m})

÷.

Things getting wild...

Up to the action of $\mathsf{GL}_5(\mathbb{C})^{\times 3}\rtimes \mathcal{S}_3$ there are exactly 5 concise 1-degenerate minimal border rank tensors in $\mathbb{C}^5\otimes\mathbb{C}^5\otimes\mathbb{C}^5$ and those are:

$$
T_{\mathcal{O}_{58}} = \begin{pmatrix} x_1 & x_2 & x_3 & x_5 \\ x_5 & x_1 & x_4 & -x_2 \\ & x_1 & & & \\ & -x_5 & x_1 & \\ & & x_5 & \\ & & x_6 & \\ & & & x_7 & \\ & & & x_8 & \\ & & & & x_9 & \\ & & & & x_1 & \\ & & & & & x_9 & \\ & & & & & x_9 & \\ & & & & & & x_9 \end{pmatrix}, T_{\mathcal{O}_{57}} = \begin{pmatrix} x_1 & x_2 & x_3 & x_5 \\ & x_1 & x_4 & -x_2 & \\ & x_1 & x_4 & -x_2 & \\ & & & & x_1 & \\ & & & & & x_2 & \\ & & & & & x_4 & \\ & & & & & & x_9 & \\ & & & & & & x_9 & \\ & & & & & & & x_9 \end{pmatrix},
$$

\n
$$
T_{\mathcal{O}_{56}} = \begin{pmatrix} x_1 & x_2 & x_3 & x_5 \\ & x_1 & x_4 & & \\ & x_1 & x_5 & x_4 & \\ & & & & & x_1 & \\ & & & & & & x_2 & \\ & & & & & & & x_9 \end{pmatrix},
$$

\n
$$
T_{\mathcal{O}_{56}} = \begin{pmatrix} x_1 & x_2 & x_3 & x_5 \\ & x_1 & x_2 & x_3 & x_5 \\ & x_1 & & x_4 & \\ & & & & & x_2 & \\ & & & & & & x_9 \end{pmatrix},
$$

 \overline{m}) \rightarrow \overline{m}) \rightarrow \overline{m})

÷.

The smoothable rank of a tensor $T \in A \otimes B \otimes C$, denoted $S(T)$, is the minimal degree of a zero dimensional scheme $\text{Spec}(R) \subseteq \mathbb{P}A \times \mathbb{P}B \times \mathbb{P}C$ such that $T \in \langle \text{Spec}(R) \rangle$.

(何) イミトイミト

 $2Q$

œ.

The smoothable rank of a tensor $T \in A \otimes B \otimes C$, denoted $S(T)$, is the minimal degree of a zero dimensional scheme $\text{Spec}(R) \subseteq \mathbb{P}A \times \mathbb{P}B \times \mathbb{P}C$ such that $T \in \langle \operatorname{Spec}(R) \rangle$.

In general $\mathbf{R}(T) \geq \mathbf{S}(T) \geq \mathbf{R}(T)$. If $\mathbf{S}(T) > \mathbf{R}(T)$ then T is called a wild tensor.

(何) イミト イミト

 OQ

œ.

The smoothable rank of a tensor $T \in A \otimes B \otimes C$, denoted $S(T)$, is the minimal degree of a zero dimensional scheme $\text{Spec}(R) \subseteq \mathbb{P}A \times \mathbb{P}B \times \mathbb{P}C$ such that $T \in \langle \operatorname{Spec}(R) \rangle$.

In general $\mathbf{R}(T) \geq \mathbf{S}(T) \geq \mathbf{R}(T)$. If $\mathbf{S}(T) > \mathbf{R}(T)$ then T is called a wild tensor.

Theorem

In $\mathbb{C}^5\otimes\mathbb{C}^5\otimes\mathbb{C}^5$ concise, minimal border rank, wild tensors are precisely $T_{\mathcal{O}_{58}}$, $T_{\mathcal{O}_{57}}$, $T_{\mathcal{O}_{56}}$, $T_{\mathcal{O}_{54}}$, $T_{\mathcal{O}_{54}}$.

(ロ) (伊) (금) (국) (국) 2 - 9 Q Q*

Thank you!!!

イロトメ 倒 トメ ミトメ ミト

 $2Q$

目

References

Murray Gerstenhaber

On Dominance and Varieties of Commuting Matrices Annals of Mathematics, Mar. 1961, Second Series, Vol. 73 No. 2, pp 324-348.

JM Landsberg, Mateusz Michalek

Abelian Tensors

Journal of Pure and Applied Mathematics, Vol. 108, Issue 3, September 2017, pp 333-371.

V. Strassen

Rank and Optimal Computation of Generic Tensors Linear Algebra and its Applications, 52/53(1983), 645-685.

Weronika Buczynska, Jaroslaw Buczynski Apolarity, border rank and multigraded Hilbert scheme

Shmuel Friedland,

On tensors of border rank l in $\mathbb{C}^{m \times n \times l}$ Linear Algebra and its Applications, Volume 438, issue 2, pp 713-737

Peter Burgisser, Michael Clausen, and M. Amin Shokrollahi Algebraic complexity theory

K 御 ▶ K 君 ▶ K 君 ▶

Þ

For $T \in A \otimes B \otimes C$ a concise tensor

Definition

 $Ann(T) = \{x \in Sym(A^*) \otimes Sym(B^*) \otimes Sym(C^*) | x.T = 0\}$

- $\textbf{0} \ \ I \subset Ann(T)$ i.e. $I_{110} \subset T(C^*)^{\perp}$, etc. and $I_{111} \subset T^{\perp}$
- **2** For all i, j, k such that $i + j + k > 1$, then codim $I_{ijk} = m$
- The image of the multiplication map $I_{i-1,j,k}\otimes A^*\oplus I_{i,j-1,k}\otimes B^*\oplus I_{i,j,k-1}\otimes C^*\to S^iA^*\otimes S^jB^*\otimes S^kC^*$ is contained in I_{ijk}

We refer to the codimension criterion at (i, j, k) grade as ijk -test.

[back](#page-35-0)

K 御 x x ∄ x x ∄ x → ∄ → 9 Q O

Let $T \in A \otimes B \otimes C$ concise, 1_A -generic, and $\alpha_1, \cdots, \alpha_m$ a basis of A^* with $T_A(\alpha_1)$ full rank. Consider $\langle Id_{B^*},M_2,\cdots ,M_m\rangle \subset \mathsf{Hom}(B^*,B^*)$, where $M_i = T_A(\alpha_1)^{-1} T_A(\alpha_i).$

T is rank $m \iff M_i$'s simultaneously diagonalizable.

 \textsf{T} is border rank $m \iff$ M $_i$'s are in the closure of the space of simultaneously diagonalizable matrices.

[back](#page-11-0)

(御) (君) (君) (君)

 PQQ

Apolarity Lemma

Let $S = \mathbb{C}[x_1,\ldots,x_n]$ and $T = \mathbb{C}[y_1,\ldots,y_n]$. Define T action on S as $y_i \cdot x_j = \frac{\partial}{\partial x_i} x_j.$ Let $f\in S_d$ and $f^\perp:=\{t\in T|t\cdot f=0\}$ be called the apolar ideal of $f.$

Apolarity Lemma

 $f \in \langle l_1^d, \ldots, l_r^d \rangle \iff f^\perp$ contains an ideal of r distinct points.

[back](#page-35-0)

④ 日本 イヨ ト イヨ ト ニヨー

End Closed Condition

Let $T\in A\otimes B\otimes C$ be a concise 1_{A} -generic tensor and $\alpha\in A^{\ast}$ such that $T_{A}(\alpha)$ has full rank. Then $T(\alpha)^{-1}T_A(A^*)$ is a subalgebra of $\mathsf{Hom}(B^*,B^*)$.

[back](#page-27-0)

メタメ メミメ メモメー

 $2Q$

э

Flag Condition

Let $T \in A \otimes B \otimes C$ be a concise tensor. Then if $\underline{R}(T) = m$ there exist $A_1 \subset A_2 \subset \cdots A_m = A^*$ such that $\dim(A_i) = i$ and $T_A(A_i) \subset \sigma_i(\mathbb{P} B \times \mathbb{P} C)$.

[back](#page-16-0)

メ御 ドメ ミド メ ミトー

 $2Q$

Œ.

Theorem ([\[Friedland\]](#page-46-0), Thm 3.1)

Let $T\in A\otimes B\otimes C$ be 1_C -degenerate and rank of elements of $T_C(C^*)$ are bounded by $m-1$ but not by $m-2$. Then there exist bases of A, B, C such that, letting X_1,\cdots,X_m be a basis of $T_C(C^*)$ as a space of matrices,

3 $X_1 = \begin{pmatrix} Id_{m-1} & 0 \\ 0 & 0 \end{pmatrix}$ $\sum X_m = \begin{pmatrix} \mathbf{x}_m & e_1 \\ e^{m-1} & 0 \end{pmatrix}$ e^{m-1} 0 \setminus ● For all $2 \leq s \leq m-1$, $X_s = \begin{pmatrix} \mathbf{x}_s & 0 \ 0 & 0 \end{pmatrix}$. Here $e_1 = (1, 0, \dots, 0)^t \in \mathbb{C}^{m-1}$, $e^{m-1} = (0, 0, \dots, 1) \in \mathbb{C}^{m-1*}$, $\mathbf{x}_i \in Mat_{(m-1)\times(m-1)}$. Moreover, let $\hat{U_R} = \langle \mathbf{x}_m^j e_1 | j \in \mathbb{Z}_{\geq 0} \rangle \subset \mathbb{C}^{m-1}$ and $U_L=\langle e^{m-1}{\bf x}_m^j|j\in\mathbb{Z}_{\geq 0}\rangle\subset\mathbb{C}^{m-\overline{1}\, *}$. Then $e^{m-1}U_R=0, U_L e_1=0$ and ${\bf x}_sU_R = 0 = U_L{\bf x}_s$ for $2 \le s \le m-1$.

[back](#page-0-1)

イロメ イ部メ イヨメ イヨメーヨー

Consider: $T=(e_1\otimes e_1\otimes e_2)+(e_1\otimes e_2\otimes e_1)+e_2\otimes e_1\otimes e_1)\in\mathbb{C}^2\otimes\mathbb{C}^2\otimes\mathbb{C}^2.$

Rank 3 as $\begin{pmatrix} a & b \\ b & 0 \end{pmatrix}$ b 0), $a, b \in \mathbb{C}$ can not be written as sum of two rank one matrices.

Border rank 2 as $T(\epsilon) = \frac{1}{\epsilon} [(e_1 + \epsilon e_2) \otimes (e_1 + \epsilon e_2) \otimes (e_1 + \epsilon e_2) - e_1 \otimes e_1 \otimes e_1]$ and $T(\epsilon) \to T$ as $\epsilon \to 0$.

[back](#page-1-0)

御き メミメ メミメー ミー

 PQQ

Let $T \in A \otimes B \otimes C$ and $T = \sum_{i=1}^r a_i \otimes b_i \otimes c_i$ be a rank decomposition.

Definition

T is concise if $\{a_1, \dots, a_r\}$ spans A, $\{b_1, \dots, b_r\}$ spans B, and $\{c_1, \dots, c_r\}$ spans C .

[back](#page-1-0)

- 4 モ ト ィ ヨ ト II

E.

Working over C.

The join of two varieties $Y, Z \subset \mathbb P V$ is $J(Y, Z) = \overline{\cup_{x \in Y, y \in Z, x \neq y} \mathbb P^1_{xy}}.$ The r-th secant variety of a variety $X \subset \mathbb{P}V$ is

$$
\sigma_r(X) = \overline{\cup_{P_1,\cdots,P_r \in X} \langle P_1,\cdots,P_r \rangle} = J(Y,J(Y,\cdots))
$$

Fact: Joins and Secants of irreducible varieties are irreducible. **Fact:** $X = Seg(\mathbb{P}V_1 \times \cdots \times \mathbb{P}V_n)$, then Euclidean and Zariski closure of X agree for $\sigma_r(X)$. Sketch:

- Euclidean closure is contained in Zariski closure.
- \bullet Z an irreducible variety and $U \subset Z$ a Zariski open subset then $\overline{U} = Z$ in terms of Zariski closure and Euclidean closure.
- **•** For X take U to be set of rank at most r tensors.

(御) (唐) (唐) (

÷.

 OQ

Expected Dimension:

For $\sigma_r(X)$ is $\min\{rn + r - 1, N\}$, where $X \subset \mathbb{P}^N$ and $\dim(X) = n$. Defect $\delta_r := rn + r - 1 - \dim \sigma_r(X)$.

Theorem (Terracini's Lemma)

Let $P_1, \dots, P_r \in X$ be general points and $P \in \langle P_1, \dots, P_r \rangle \subset \sigma_r(X)$ a general point. Then

$$
T_P(\sigma_r(X)) = \langle T_{P_1}(X), \cdots, T_{P_r}(X) \rangle
$$

Consequence: $\delta_r(Seg(\mathbb{P} A \times \mathbb{P} B)) = r^2 - r$ **Consequence:** $m > 2$ and $r \leq \min\{\dim V_i\}$ then $\sigma_r(Seg(\mathbb{P}V_1 \times \cdots \times \mathbb{P}V_m))$ is not defective.

[back](#page-19-0)

K ロ > K 個 > K ミ > K ミ > → 트 → K Q Q Q

Fact: For a finite algebra $\mathcal{A} = \prod \mathcal{A}_t$, with \mathcal{A}_t local. Algebra \mathcal{A} can be generated by q elements if and only if $H_{\mathcal{A}_t}(1) \leq t$ for all t .

メタメ メミメ メモメー

 $2Q$

œ.

Fact: For a finite algebra $\mathcal{A} = \prod \mathcal{A}_t$, with \mathcal{A}_t local. Algebra \mathcal{A} can be generated by q elements if and only if $H_{\mathcal{A}_t}(1) \leq t$ for all t .

For m=5: Let T be 1_A -generic with $T_A(\alpha_0)$ full rank and $E=T_A(A^*)T_A(\alpha_0)^{-1}\subset \mathsf{End}(C)$ space of commuting matrices. Gives C an $S := \mathbb{C}[y_1, \cdots, y_4]$ -module structure. $S/Ann(C) \cong E = \langle x_1, \cdots, x_5 \rangle$

K 御 ▶ K 君 ▶ K 君 ▶ ○ 君 ○

Fact: For a finite algebra $\mathcal{A} = \prod \mathcal{A}_t$, with \mathcal{A}_t local. Algebra \mathcal{A} can be generated by q elements if and only if $H_{\mathcal{A}_t}(1) \leq t$ for all t .

For m=5: Let T be 1_A -generic with $T_A(\alpha_0)$ full rank and $E=T_A(A^*)T_A(\alpha_0)^{-1}\subset \mathsf{End}(C)$ space of commuting matrices. Gives C an $S := \mathbb{C}[y_1, \dots, y_4]$ -module structure. $S/Ann(C) \cong E = \langle x_1, \cdots, x_5 \rangle$

Case-I: E contains an element with more than one eigenvalue. That implies(by Lemma 3.12 of Components and Singularities paper) $S/Ann(C) \cong \prod_t S/K_t$, non-trivial product of local algebras and $\dim(E)=5 \implies \dim(S/K_t) \leq 4 \implies H_{S/K_t}(1) \leq 3.$ Thus E can be generated by at most 3 matrices.

(ロ) (伊) (금) (국) (국) 2 - 9 Q Q*

Fact: For a finite algebra $\mathcal{A} = \prod \mathcal{A}_t$, with \mathcal{A}_t local. Algebra \mathcal{A} can be generated by q elements if and only if $H_{\mathcal{A}_t}(1) \leq t$ for all t .

For m=5: Let T be 1_A -generic with $T_A(\alpha_0)$ full rank and $E=T_A(A^*)T_A(\alpha_0)^{-1}\subset \mathsf{End}(C)$ space of commuting matrices. Gives C an $S := \mathbb{C}[y_1, \dots, y_4]$ -module structure. $S/Ann(C) \cong E = \langle x_1, \cdots, x_5 \rangle$

Case-I: E contains an element with more than one eigenvalue. That implies(by Lemma 3.12 of Components and Singularities paper) $S/Ann(C) \cong \prod_t S/K_t$, non-trivial product of local algebras and $\dim(E)=5 \implies \dim(S/K_t) \leq 4 \implies H_{S/K_t}(1) \leq 3.$ Thus E can be generated by at most 3 matrices.

Case-II:All elements of E are nilpotent. Then $H_E(0) = 1$, $H_E(1) > 4 \implies H_E(2) = 0$. Then by Thm 6.14 of Components and Singularities of Commuting Matrices-J,S paper this tuple is in the closure of the tuple of simultaneously diagonalizable matrices.

[back](#page-32-0)

KOD KOD KED KED E 1990

Theorem ([\[Friedland\]](#page-46-0), Thm 3.1)

Let $T\in A\otimes B\otimes C$ be 1_A -degenerate and rank of elements of $T_A(A^*)$ are bounded by $m-1$ but not by $m-2$. Then there exist bases of A, B, C such that, letting X_1, \cdots, X_m be a basis of $T_A(A^*)$ as a space of matrices,

\n- $$
X_1 = \begin{pmatrix} Id_{m-1} & 0 \\ 0 & 0 \end{pmatrix}
$$
\n- $X_m = \begin{pmatrix} \mathbf{x}_m & \omega \\ \alpha & 0 \end{pmatrix}$
\n- \bullet For all $2 \leq s \leq m-1$, $X_s = \begin{pmatrix} \mathbf{x}_s & 0 \\ 0 & 0 \end{pmatrix}$.
\n- Here $\omega \in \mathbb{C}^{m-1}$, $\alpha \in \mathbb{C}^{(m-1)*}$, $\mathbf{x}_m, \mathbf{x}_s \in Mat_{(m-1)\times(m-1)}$. Moreover, $\alpha \mathbf{x}_m^j \omega = 0$ for all j , and letting $U_R = \langle \mathbf{x}_m^j \omega | j \in \mathbb{Z}_{\geq 0} \rangle \subset \mathbb{C}^{m-1}$ and
\n

 $U_L=\langle \alpha \mathbf{x}_m^j|j\in\mathbb{Z}_{\geq 0}\rangle\subset \mathbb{C}^{(m-1)*}.$ Then $\mathbf{x}_sU_R=0=U_L\mathbf{x}_s$ for $2\leq s\leq m-1.$

→ 伊 ト イヨ ト イヨ ト ニヨー

つくい