Concise Tensors of Minimal Border Rank

Arpan Pal

Texas A&M University, College Station, TX

March 26, 2022

Definitions

Let $T \in A \otimes B \otimes C$.

T can be seen as a linear map $T_A: A^* \to B \otimes C$. Similarly T_B and T_C .

Definition

The rank of a tensor T, denoted $R(T)$, is the smallest r such that $T = \sum_{i=1}^r a_i \otimes b_i \otimes c_i.$

Definition

The border rank of a tensor T, denoted $R(T)$, is the smallest r such that

$$
T = \lim_{\epsilon \to 0} T_{\epsilon} \text{ where } \mathbf{R}(T_{\epsilon}) = r.
$$

Definition

The tensor T is called *concise* if T_A , T_B and T_C are of full rank.

Questions

Assume $\dim(A) = \dim(B) = \dim(C) = m$ and $T \in A \otimes B \otimes C$.

Question 1

Find equations for the set of border rank at most m tensors.

Question 1 is answered up to dimension $m=4$. [\[Friedland\]](#page-12-0)

Assuming T is concise, minimal possible border rank for T is m .

Question 2

Find equations for the set of concise minimal border rank tensors.

Under a natural genericity condition this question is same as characterizing the closure of simultaneously diagonalizable matrices.

 $B\otimes C$ is identified with linear maps from B^* to C , $\mathsf{Hom}(B^*,C).$

Definition

 T is called 1_A -generic(similarly 1_B and $1_C)$ if there exist $x\in A^*$ such that $T_A(x)$ is invertible. T is called 1_{*} -generic if it is 1_{A} , 1_{B} or 1_{C} -generic.

If T is 1_∗-generic then we [reduce to](#page-14-0) a classical problem of classifying the closure of simultaneously diagonalizable matrices.

Question 3

Find equations for the set of concise, 1_{*} -generic, minimal border rank tensors.

Question 3 is answered for $m = 5$. [\[Landsberg, Michalek\]](#page-12-1)

Simultaneously Diagonalizable Matrices

Let M_1, \dots, M_m be m simultaneously diagonalizable $m \times m$ matrices.

Classical Problem

Characterize the closure of the space of a finite number of simultaneously diagonalizable matrices.

Known Results

- [End Closed Condition:](#page-15-0) Known since 1960.[\[Gerstenhaber\]](#page-12-2)
- [Flag Condition:](#page-16-0) Appeared in 1997.[\[Burgisser, Clausen, Shokrollahi\]](#page-12-3)
- Question 1 is finding equations for the secant variety, $\sigma_m(\mathbb{CP}^{m-1}\times\mathbb{CP}^{m-1}\times\mathbb{CP}^{m-1}).$
- Complexity Theory: Latest bound on the exponent of matrix multiplication is achieved through Coppersmith-Winograd tensor. Which is a concise minimal border rank tensor.
- Classical Linear Algebra: Closure of simultaneously diagonalizable matrices.
- Algebraic Geometry: Hilbert schemes and Quot Schemes.

Strassen's Equations

Simultaneously diagonalizable \implies Commuting.

Theorem ([\[Strassen\]](#page-12-4))

Let X_1, X_2 and Y be in $T_A(A^*)$. If T is of minimal border rank then $adj(Y)X_1$ adj $(Y)X_2 - adj(Y)X_2$ adj $(Y)X_1 = 0$.

Assuming T 1_{*} -generic, we can take Y to be of full rank and in particular identity matrix. Then Strassen's Equations precisely reduces to commuting criterion of X_1 and X_2 .

These are necessary conditions a tensor must satisfy in order to be of minimal border rank.

A concise tensor T is said to pass 111-test if $\dim((T_A(A^*)\otimes A)\cap(T_B(B^*)\otimes B)\cap(T_C(C^*)\otimes C))\geq m.$

Definition

If T satisfies the above inequality then T is called 111-abundant and if it satisfies without excess, i.e. the above inequality becomes equality then we say T is 111-sharp.

Towards m=5 and 6, 1_A -generic case

In this case T is 1_A -generic and concise.

- Already solved, Question 3 for m=5. [\[Landsberg, Michalek\]](#page-12-1)
- Known answer: Strassen's equations together with end closed condition.

Theorem (J. Jelisiejew, K. Sivic)

The closure of the space of 4-tuple of 5×5 commuting matrices is not irreducible and has exactly two components. The principal component is the closure of simultaneously diagonalizable matrices and one other bad component.

Upshot: This extends to $m = 6$ and the same remains true!

Theorem (Jelisiejew, Landsberg, P)

Let $T \in \mathbb{C}^m \otimes \mathbb{C}^m \otimes \mathbb{C}^m$, where $m=5,6$, be a concise 1_* -generic tensor. Then the following subsets coincide.

- **1** The zero set of Strassen's equations and End-closed equations.
- ² 111-abundant tensors.
- ³ 111-sharp tensors.
- \bullet Minimal border rank tensors.

Theorem (Jelisiejew, Landsberg, P)

Let $T\in\mathbb{C}^5\otimes\mathbb{C}^5\otimes\mathbb{C}^5$ be a concise tensor. Then the following subsets are equal.

- **4** 111-abundant tensors.
- **2** Minimal border rank tensors.

Thank you

Thank you!

References

Murray Gerstenhaber

On Dominance and Varieties of Commuting Matrices Annals of Mathematics, Mar. 1961, Second Series, Vol. 73 No. 2, pp 324-348.

JM Landsberg, Mateusz Michalek

Abelian Tensors

Journal of Pure and Applied Mathematics, Vol. 108, Issue 3, September 2017, pp 333-371.

V. Strassen

Rank and Optimal Computation of Generic Tensors Linear Algebra and its Applications, 52/53(1983), 645-685.

Joseph M. Landsberg, Giorgio Ottaviani

New Lower Bounds for the Border Rank of Matrix Multiplication Theory of Computing, Vol. 11(11),2015,pp. 285-298.

Shmuel Friedland,

On tensors of border rank l in $\mathbb{C}^{m \times n \times l}$ Linear Algebra and its Applications, Volume 438, issue 2, pp 713-737

Peter Burgisser, Michael Clausen, and M. Amin Shokrollahi Algebraic complexity theory

量

Prinitive Spaces of Matrices of Bounded rank. II. Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics, 34(3), 306-315. doi:10.1017/S1446788700023740

Let T be concise, 1_A -generic, and $\alpha_1, \cdots, \alpha_m$ be a basis of A^* with $T_A(\alpha_1)$ full rank. Consider $Id_{B^*}, T_A(\alpha_1)^{-1}T_A(\alpha_2), \cdots, T_A(\alpha_1)^{-1}T_A(\alpha_m) \in \mathsf{Hom}(B^*, B^*).$

If T is of rank m then note that $T_A(\alpha_1)^{-1}T_A(\alpha_2),\cdots,T_A(\alpha_1)^{-1}T_A(\alpha_m)$ needs to be simultaneously diagonalizable matrices. This is basically consequence of Strassen's equations.

Thus if T is of border rank m then $T_A(\alpha_1)^{-1}T_A(\alpha_2),\cdots,T_A(\alpha_1)^{-1}T_A(\alpha_m)$ has to be in the closure of the space of simultaneously diagonalizable tuple of matrices.

[back](#page-3-0)

End Closed Condition

Let $T\in A\otimes B\otimes C$ be a concise 1_{A} -generic tensor and $\alpha\in A^{\ast}$ such that $T_{A}(\alpha)$ has full rank. Then $T(\alpha)^{-1}T_A(A^*)$ is a subalgebra of $\mathsf{Hom}(B^*,B^*)$.

Flag Condition

Flag Condition

Let $T \in A \otimes B \otimes C$ be a concise tensor. Then if $R(T) = m$ there exist $A_1 \subset A_2 \subset \cdots \subset A_m = A^*$ such that $\dim(A_i) = i$ and $\mathbb{P} T_A(A_i) \subset \sigma_i(\mathbb{P} B \times \mathbb{P} C)$.

[back](#page-4-0)

Theorem ([\[Friedland\]](#page-12-0), Thm 3.1)

Let $T\in A\otimes B\otimes C$ be 1_A -degenerate and rank of elements of $T_A(A^*)$ are bounded by $m-1$ but not by $m-2$. Then there exist bases of A, B, C such that, letting X_1, \cdots, X_m be a basis of $T_A(A^*)$ as a space of matrices,

3 $X_1 = \begin{pmatrix} Id_{m-1} & 0 \\ 0 & 0 \end{pmatrix}$ $2 X_m = \begin{pmatrix} x_m & \omega \\ \omega & 0 \end{pmatrix}$ $\alpha = 0$ \setminus **3** For all $2 \leq s \leq m-1$, $X_s = \begin{pmatrix} \mathbf{x}_s & 0 \\ 0 & 0 \end{pmatrix}$. Here $\omega \in \mathbb{C}^{m-1}$, $\alpha \in \mathbb{C}^{(m-1)*}$, $\mathbf{x}_m, \mathbf{x}_s \in \mathsf{Mat}_{(m-1)\times(m-1)}$. Moreover, $\alpha\mathbf{x}_m^j\omega=0$ for all j , and letting $U_R=\langle\mathbf{x}_m^j\omega|j\in\mathbb{Z}_{\geq0}\rangle\subset\mathbb{C}^{m-1}$ and $U_L=\langle \alpha \mathbf{x}_m^j|j\in\mathbb{Z}_{\geq 0}\rangle\subset \mathbb{C}^{(m-1)*}.$ Then $\mathbf{x}_sU_R=0=U_L\mathbf{x}_s$ for $2\leq s\leq m-1.$

[back](#page-0-1)